FUNCTIONAL AND THERAPEUTIC POTENTIAL OF PSEUDOCEREALS: QUINOA, BUCKWHEAT, AND AMARANTH

Authors

Keywords:

Pseudocereals, quinoa, buckwheat, amaranth, bioactive compounds, therapeutic potential, functional food

Abstract

Pseudocereals are plant species that, despite not belonging to the Poaceae family, exhibit nutritional characteristics similar to true cereals in terms of macro- and micronutrient composition. Quinoa (Chenopodium quinoa), buckwheat (Fagopyrum esculentum), and amaranth (Amaranthus spp.) have gained significant attention due to their gluten-free nature, rich profiles of functional constituents, and promising health benefits. These crops provide high-quality proteins, essential amino acids, dietary fiber, and a wide variety of phytochemicals such as phenolic acids, flavonoids, tocopherols, and saponins. Numerous studies have demonstrated the antioxidant, anti-inflammatory, hypoglycemic, and hypolipidemic activities of these compounds. Pseudocereals may contribute to reducing oxidative stress, preventing free radical damage, modulating immune responses, and maintaining glucose homeostasis. Their low glycemic index supports improved insulin sensitivity and offers benefits in both the prevention and dietary management of type 2 diabetes. Additionally, their vascular-protective and lipid-regulating properties highlight their potential role in cardiovascular health. This review evaluates the nutritional composition, functional constituents, and potential therapeutic effects of quinoa, buckwheat, and amaranth based on recent scientific evidence. The findings suggest that these crops should be considered not only alternative agricultural resources but also valuable complementary components within modern medical nutrition strategies, contributing to long-term health promotion and the prevention of chronic metabolic disorders.

References

[1] Adolf, V. I., Jacobsen, S. E., & Shabala, S. (2013). Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany, 92, 43–54.

[2] Akbaş, F., Ceyhan, E., & Tohumluk, M. (2021). Türkiye’de alternatif tahılların potansiyeli: Amarant örneği. Anadolu Tarım Bilimleri Dergisi, 36(2), 180–187. https://doi.org/10.7161/omuanajas.872340.

[3] Alvarez-Jubete, L., Arendt, E. K., & Gallagher, E. (2010). Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology, 21(2), 106–113.

[4] Bazile, D., Jacobsen, S. E., & Verniau, A. (2016). The global expansion of quinoa: Trends and limits. Frontiers in Plant Science, 7, 622.

[5] Bhargava, A., Shukla, S., & Ohri, D. (2006). Chenopodium quinoa—An Indian perspective. Industrial Crops and Products, 23(1), 73–87.

[6] Bhargava, A., Shukla, S., & Ohri, D. (2007). Genetic variability and heritability of selected traits during different cuttings of vegetable amaranth (Amaranthus tricolor). International Journal of Plant Production, 1(1), 1–7.

[7] Christa, K., & Soral-Śmietana, M. (2008). Buckwheat grains and buckwheat products—Nutritional and prophylactic value of their components–A review. Czech Journal of Food Sciences, 26(3), 153–162.

[8] Dziadek, K., Kopeć, A., Leszczyńska, T., & Pisulewski, P. (2018). Buckwheat bioactive compounds: Anti-inflammatory effects in vitro. Journal of Medicinal Food, 21(6), 569–576.

[9] Erbaş, M., & Geren, H. (2018). Ege Bölgesi koşullarında farklı kinoa çeşitlerinin adaptasyon yeteneği. Tarım Bilimleri Dergisi, 24(3), 389–396.

[10] FAO. (2011). Quinoa: An ancient crop to contribute to world food security. Rome: Food and Agriculture Organization of the United Nations.

[11] Farhangi, M. A., Dehghan, P., Tajmiri, S., & Jahangiri, S. (2021). Effect of quinoa consumption on metabolic parameters in obese individuals: A randomized controlled trial. Journal of Functional Foods, 82, 104500.

[12] Fiorito, S., Pignatiello, S., Manfra, M., & Spagnuolo, C. (2022). Quinoa and amaranth as emerging gluten-free functional grains: Potential and challenges. Nutrients, 14(12), 2498.

[13] Gamel, T. H., Linssen, J. P., Alink, G. M., & Mesallam, A. S. (2023). Bioactive compounds and antioxidant activity of amaranth and quinoa seeds as affected by thermal treatments. Food Chemistry, 394, 134997.

[14] Gawlik-Dziki, U., Świeca, M., & Sułkowski, M. (2013). Effect of bioaccessibility of phenolic compounds on antioxidant activity of quinoa and amaranth. LWT- Food Science and Technology, 50(2), 714–720.

[15] Geerts, S., Raes, D., Garcia, M., & Mendoza, J. (2009). Crop water use indicators to quantify the flexible phenology of quinoa (Chenopodium quinoa Willd.). Experimental Agriculture, 45(4), 427–440.

[16] Geren, H. (2015). A new promising grain crop for temperate climates: Quinoa (Chenopodium quinoa Willd.). Turkish Journal of Field Crops, 20(1), 1–10.

[17] González, E., Rivas, M., Díaz, M., Carrasco, F., & Santos, J. L. (2020). Impact of quinoa consumption on glycemic control in patients with type 2 diabetes. Journal of Functional Foods, 65, 103738.

[18] Gorinstein, S., Vargas, O. J. M., Jaramillo, N. O., Salas, I. A., Ayala, A. L. M., Arancibia-Avila, P., Toledo, F., Katrich, E., & Trakhtenberg, S. (2005). Comparison of the contents of the main biochemical compounds and the antioxidant activity of some Spanish and Israeli legumes. Nutrition, 21(4), 452–458.

[19] Graf, B. L., Raskin, I., Cefalu, W. T., & Ribnicky, D. M. (2015). Plant-derived therapeutics for the treatment of metabolic syndrome. Current Opinion in Investigational Drugs, 11(10), 1107–1115.

[20] Gupta, S., Jahan, N., & Singh, R. P. (2021). Role of pseudocereals in food and nutrition security. Food Reviews International, 37(4), 311–330.

[21] Hariadi, Y., Marandon, K., Tian, Y., Jacobsen, S. E., & Shabala, S. (2011). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany, 62(1), 185–193.

[22] Jacobsen, S. E. (2017). The scope for adaptation of quinoa in northern latitudes of Europe. Journal of Agronomy and Crop Science, 203(6), 603–613.

[23] Jacobsen, S. E., Monteros, C., Christiansen, J. L., Bravo, L. A., Corcuera, L. J., & Mujica, A. (2003). Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. European Journal of Agronomy, 19(1), 47–57.

[24] Jarvis, D. E., Ho, Y. S., Lightfoot, D. J., Schmöckel, S. M., Li, B., Borm, T. J. A., Ohyanagi, H., Mineta, K., Michell, C. T., Saber, N., Kharbatia, N. M., Rupper, R. R., Sharp, A. R., Dally, N., Boughton, B. A., Woo, Y. H., Gao, G., Schijlen, E. G. W. M., Guo, X., … Tester, M. (2017). The genome of Chenopodium quinoa. Nature, 542(7641), 307–312.

[25] Karaköy, T., Yıldırım, M., & Anlarsal, A. E. (2014). Türkiye’de kinoa üretim potansiyeli ve adaptasyon denemeleri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 23(1), 43–50.

[26] Karaköy, T., & Yıldırım, M. (2022). Yalancı tahıllarda iklim değişikliğine karşı stratejik yaklaşımlar. Tarım ve Gıda Bilimleri Dergisi, 12(1), 67–74.

[27] Kaya, N., Sefer, F., & Dedeoğlu, A. (2019). Glütensiz fonksiyonel gıdalar: Kinoa ve amarant örneği. GIDA, 44(2), 325–336.

[28] Kim, S. L., Kim, S. K., & Park, C. H. (2004). Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Research International, 37(4), 319–327.

[29] Martinez-Villaluenga, C., Peñas, E., & Frias, J. (2020). Bioactive peptides from pseudocereals: Production, functionality and application in food. Trends in Food Science & Technology, 105, 240–250.

[30] Mlakar, S. G., Turinek, M., Jakop, M., Bavec, M., & Bavec, F. (2009). Nutrition value and use of grain amaranth: potential future application in bread production. Agricultura, 6(2), 43–53.

[31] Moreno, M. D. L., Rodríguez-Herrera, A., Sousa, C., & Comino, I. (2014). Safe consumption of pseudocereals in celiac patients. Plant Foods for Human Nutrition, 69(3), 237–243.

[32] Mujica, A., Jacobsen, S. E., Jensen, C. R., & Izquierdo, J. (2001). Quinoa (Chenopodium quinoa Willd.) as a potential crop for agricultural diversification. FAO Regional Office for Latin America.

[33] Nowak, V., Du, J., & Charrondière, U. R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 193, 47–54.

[34] Písaříková, B., Zralý, Z., & Kráčmar, S. (2005). Nutritional value of amaranth (genus Amaranthus L.) grain in diets for human nutrition. Czech Journal of Animal Science, 50(12), 568–573.

[35] Repo-Carrasco-Valencia, R., & Serna, L. A. (2011). Quinoa (Chenopodium quinoa Willd.) as a source of dietary fiber and other functional components. Cereal Chemistry, 88(2), 123–128.

[36] Rastogi, A., & Shukla, S. (2013). Amaranth: A new millennium crop of nutraceutical values. Critical Reviews in Food Science and Nutrition, 53(2), 109–125.

[37] Silva-Sánchez, C., de la Rosa, A. P. B., León-Galván, M. F., de Lumen, B. O., de León-Rodríguez, A., & Barba de la Rosa, A. P. (2014). Nutritional and nutraceutical quality of amaranth. Journal of Food Science, 79(4), R577–R585.

[38] Tang, Y., Li, X., Zhang, B., Chen, P. X., Liu, R., & Tsao, R. (2015). Characterisation of phenolics, betacyanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry, 166, 380–388.

[39] Tomotake, H., Shimaoka, I., Kayashita, J., Nakajoh, M., & Kato, N. (2006). Physiological effect of dietary buckwheat protein on lipid metabolism in rats. Nutrition Research, 26(2), 61–66.

[40] Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 90(15), 2541–2547.

[41] Winkel, T., Bertero, D., Bommel, P., Bourliaud, J., Chevarría-Lazo, M., Cortes, G., et al. (2015). The sustainability of quinoa production in southern Bolivia: from misrepresentation to questionable solutions. Sustainability, 7(7), 8444–8470.

[42] Yıldırım, H., & Yıldız, A. (2020). Türkiye’de kinoa üretiminin ekonomik analizi. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 20(2), 301–316.

[43] Zevallos, V. F., Ellis, H. J., & Ciclitira, P. J. (2012). Gastrointestinal effects of quinoa (Chenopodium quinoa Willd.) in celiac patients. The American Journal of Gastroenterology, 107(2), 270–273.

Downloads

Published

2025-12-29

How to Cite

ÇELİK, S. A., ÇELİK, Y., & BİLMEZ, S. (2025). FUNCTIONAL AND THERAPEUTIC POTENTIAL OF PSEUDOCEREALS: QUINOA, BUCKWHEAT, AND AMARANTH. Türk Bilimsel Derlemeler Dergisi, 18(2), 41–53. Retrieved from https://derleme.gen.tr/index.php/derleme/article/view/495

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.