NEW GENERATION BIOMATERIALS USED IN MEDICAL APPLICATIONS AND CURRENT DEVELOPMENTS
Keywords:
Keywords: Biomaterials, Biocompatibility, Medical Applications, Innovative BiomaterialsAbstract
Biomaterials are materials that are developed by combining organic and synthetic materials in medical applications, can be integrated into the body and are biocompatible. In recent years, rapid advances in biomaterial technologies have enabled revolutionary innovations in the field of health. In biomaterial production, there are technical and economic obstacles such as suitability for the target tissue, the need to use mechanically and biologically stable materials, sterilization, modification and scalable production. In addition, making them suitable for the clinical environment, ensuring long-term biocompatibility and predicting biological responses that may vary from patient to patient also pose great challenges.The purpose of this review is to examine current biomaterial research and technologies and evaluate their potential effects in medical applications. Recent studies on biocompatibility of biomaterials, production processes, functional properties and difficulties encountered in clinical applications are examined in detail within the scope of the review. In particular, 4D printing technology, self-healing biomaterials, biomimetic designs and nanotechnology-based modifications are considered as prominent innovative approaches in biomaterial engineering.This study provides a comprehensive perspective on the current status of biomaterial engineering and how it can provide more effective and sustainable solutions in medical applications in the future in light of developing technologies.
References
Ratner, B. D., Hoffman, A. S., Schoen, F. J. ve Lemons, J. E. (2004): Biomaterials science: an introduction to materials in medicine.
Migonney, V. (2014): History of biomaterials. Biomaterials, 1: 1–10
Williams, D. F. (1999): The Williams dictionary of biomaterials. Liverpool University Press.
Williams, D. (2014): Essential biomaterials science. Cambridge University Press.
Mikos, A. G., Sarakinos, G., Lyman, M. D., Ingber, D. E., Vacanti, J. P. & Langer, R. (1993): Prevascularization of porous biodegradable polymers. Biotechnology and Bioengineering, 42(6): 716–723.
Vacanti, J. P. & Langer, R. (1999): Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The Lancet, 354(Suppl. 1): S32–S34.
Langer, R. & Tirrell, D. A. (2004): Designing materials for biology and medicine. Nature, 428(6982): 487–492.
Williams, D. F. (2009): On the nature of biomaterials. Biomaterials, 30(30): 5897–5909.
Park, J. B. ve Kim, Y. K. (2007): Metallic biomaterials. Biomaterials (s. 1-1). CRC Press.
Niinomi, M. (2002): Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, 33: 477–486.
Hench, L. L. (1995): Bioceramics and the future. Ceramics and Society, 101: 101–120.
Ramesh, S., Tan, C. Y., Bhaduri, S. B. & Teng, W. D. (2007): Rapid densification of nanocrystalline hydroxyapatite for biomedical applications. Ceramics International, 33(7): 1363–1367.
Filip, D. G., Surdu, V. A., Paduraru, A. V. & Andronescu, E. (2022): Current development in biomaterials—hydroxyapatite and bioglass for applications in biomedical field: a review. Journal of Functional Biomaterials, 13(4): 248.
Ayhan, H. (2002): Biyomalzemeler. Bilim ve Teknik.
Jonn, B. P. ve Young, K. K. (2000): Unit: 37 Metalic Biomaterials. Biomedical Engineering Handbook.
Ramakrishna, S., Mayer, J., Wintermantel, E. & Leong, K. W. (2001): Biomedical applications of polymer-composite materials: a review. Composites Science and Technology, 61(9): 1189–1224.
Wise, D. L., Trantolo, D. J., Lewandrowski, K. U., Gresser, J. D., Cattaneo, M. V. ve Yaszemski, M. J. (2000): Biomaterials engineering and devices: human applications (Cilt 2, s. 346). Totowa, NJ, ABD: Humana Press.
Taghizadeh, B., Ghavami, L., Derakhshankhah, H., Zangene, E., Razmi, M., Jaymand, M., Zarrintaj, P., Zarghami, N., Jaafari, M. R., Moallem Shahri, M., Moghaddasian, A., Tayebi, L., ve Izadi, Z. (2020): Biomaterials in valvular heart diseases. Frontiers in Bioengineering and Biotechnology, 8, 529244.
Park, J. B., & Bronzino, J. D. (2002): Biomaterials: principles and applications. crc press.
Dormer, K. J. & Gan, R. Z. (2001): Biomaterials for implantable middle ear hearing devices. Otolaryngologic Clinics of North America, 34(2): 289–297.
Güven, Ş. Y. (2010): Ortopedik malzemelerin biyouyumlulukları ve mekanik özelliklerine göre seçimi. Ulusal Tasarım İmalat ve Analiz Kongresi, 472-484.
Mozafari, M. (Ed.) (2020): Handbook of Biomaterials Biocompatibility. Woodhead Publishing, Cambridge.
Dec, P., Modrzejewski, A. & Pawlik, A. (2022): Existing and novel biomaterials for bone tissue engineering. International Journal of Molecular Sciences, 24(1): 529.
Wang, L., Wang, C., Wu, S., Fan, Y. & Li, X. (2020): Influence of the mechanical properties of biomaterials on degradability, cell behaviors and signaling pathways: current progress and challenges. Biomaterials Science, 8(10): 2714–2733.
Johnston, A. & Callanan, A. (2023): Recent methods for modifying mechanical properties of tissue-engineered scaffolds for clinical applications. Biomimetics, 8(2): 205.
Eldeeb, A. E., Salah, S. & Elkasabgy, N. A. (2022): Biomaterials for tissue engineering applications and current updates in the field: a comprehensive review. AAPS PharmSciTech, 23(7): 267.
Niinomi, M. (2008): Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 1(1): 30–42.
Geetha, M., Singh, A. K., Asokamani, R. & Gogia, A. K. (2009): Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science, 54(3): 397–425.
Navarro, M., Michiardi, A., Castaño, O. & Planell, J. A. (2021): Biomaterials in orthopaedics. Journal of the Royal Society Interface, 9(1): 300–317.
Best, S. M., Porter, A. E., Thian, E. S. & Huang, J. (2008): Bioceramics: Past, present and for the future. Journal of the European Ceramic Society, 28(7): 1319–1327.
Hench, L. L. (2006): The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 17(11): 967–978.
Bose, S., Roy, M. & Bandyopadhyay, A. (2013): Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 30(10): 546–554.
Place, E. S., George, J. H., Williams, C. K. & Stevens, M. M. (2009): Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews, 38(4): 1139–1151.
Middleton, J. C. & Tipton, A. J. (2000): Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23): 2335–2346.
Sultana, N. & Sultana, S. (2012): Biodegradable polymers used in controlled drug delivery system: A review. Polymers and the Environment, 20(3): 223–238.
Dash, T. K. & Konkimalla, V. B. (2012): Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158(1): 15–33.
Bonfield, W. (2006): Designing porous scaffolds for tissue engineering. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1838): 227–232.
Ramay, H. R. & Zhang, M. (2004): Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials, 25(21): 5171–5180.
Rezwan, K., Chen, Q. Z., Blaker, J. J. & Boccaccini, A. R. (2006): Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18): 3413–3431.
Patel, G. ve Bouchard, L.-S. (2024): Applications of aligned nanofiber for tissue engineering. arXiv preprint arXiv:2408.07909.
Kuddushi, M., Shah, A. A., Ayranci, C. ve Zhang, X. (2023): Recent advances in novel materials and techniques for developing transparent wound dressings. arXiv preprint arXiv:2306.15131.
Rajendran, S., Sundararajan, P., Awasthi, A. ve Rajendran, S. (2023): Nanorobotics in medicine: A systematic review of advances, challenges, and future prospects. arXiv preprint arXiv:2309.10881.
Ventola, C. L. (2014): Medical Applications for 3D Printing: Current and Projected Uses. Pharmacy and Therapeutics, 39(10): 704–711.
Murphy, S. V. & Atala, A. (2014): 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8): 773–785.
Ricles, L. M. & Nam, S. Y. (2020): Stereolithography 3D printing of biomaterials and their applications. Advanced Healthcare Materials, 9(5): 1901494.
Jung, J. W., Kang, H. W. & Lee, S. J. (2022): Progress in 3D bioprinting for tissue engineering and regenerative medicine. Journal of Tissue Engineering, 13: 204173142211016.
Khare, V., Sonkaria, S., Lee, G. Y., Ahn, S. H. & Chu, W. S. (2017): From 3D to 4D printing – design, material and fabrication for multi-functional multi-materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 4: 291–299.
Gauss, C., Pickering, K. L. & Muthe, L. P. (2021): The use of cellulose in bio-derived formulations for 3D/4D printing: A review. Composites Part C: Open Access, 4: 100113.
Schwartz, J. J. & Boydston, A. J. (2019): Multimaterial actinic spatial control 3D and 4D printing. Nature Communications, 10(1): 791.
Tüylek, Z. (2023): 4D Baskı Teknolojisi ve Biyomedikal Uygulamalar. İçinde: M. Çiçekler (Ed.), Çok Yönlü Akademik Perspektif: Ziraat, Orman ve Mühendislik Araştırmaları, s. 51–90. SRA Academic Publishing, Klaipeda.
Hao, Y., Li, Y., Zhang, Z. & Xu, X. (2023): 4D-printed shape-changing composites for biomedical applications: A new approach for bone implants. Journal of Biomedical Materials Research Part A, 111(5): 945–956.
Ruan, X., Yang, C., Li, H. & Wu, T. (2024): Development of responsive polymeric nanocomposites for controlled drug release. Advanced Drug Delivery Reviews, 164: 3–17.
Zhang, Y., Li, Y., Wang, S. & Zhao, J. (2023): Personalized 4D-printed implants for tissue engineering: Advances and challenges. Materials Science and Engineering: C, 141: 112906.
Bonetti, L. ve Scalet, G. (2025): 4D fabrication of shape-changing systems for tissue engineering: state of the art and perspectives. arXiv preprint arXiv:2501.07612.
Yarali, E., Mirzaali, M. J., Ghalayaniesfahani, A., Accardo, A., Diaz‐Payno, P. J. & Zadpoor, A. A. (2024): 4D printing for biomedical applications. Advanced Materials, 36(31): 240230.
Zhao, Z., Yang, F., Xu, H. & Li, B. (2022): Development of 4D-printed smart surfaces for biomedical applications: A review on nanomaterial-based approaches. Frontiers in Bioengineering and Biotechnology, 10: 889301.
Zhou, S., Sun, M., Wang, L. & Liu, J. (2023): Personalized smart implants: Advances in 4D printing and future perspectives. Biomaterials, 273: 120793.
Chen, Y., Zhao, L., Zhang, Z. & Li, Y. (2023): Self-healing polymer composites for biomedical applications: A comprehensive review. Journal of Materials Science, 58(6): 2223–2238.
Li, X., Zhang, Y., Wu, D. & Liu, H. (2022): Bio-inspired self-healing materials for biomedical applications: From polymers to biocomposites. Biomaterials Science, 10(3): 1025–1040.
Liu, Y., Li, F., Zhang, X. & Wang, S. (2023): Bio-inspired surface structures for enhanced biocompatibility and antimicrobial properties in biomedical applications. Acta Biomaterialia, 155: 215–225.
Wang, X., Li, J., Zhang, H. & Zhao, Y. (2023): Bio-mimetic polymers for tissue engineering applications: Progress and challenges. Biomaterials, 264: 120432.
Zhang, Y. & Li, J. (2022): Nanotechnology in biomedical applications: Current trends and future perspectives. Journal of Nanoscience and Nanotechnology, 22(4): 2132–2143.
Xu, B., Wang, Y., Zhang, L. & Li, Z. (2023): Surface modification of biomedical materials using nanotechnology: Strategies and applications. Biomaterials, 274: 120872.
Wang, L., Zhang, W., Zhang, Y. & Liu, S. (2024): Nanoparticles for drug delivery systems: Advances in the development of smart biomaterials. Advanced Drug Delivery Reviews, 162: 37–51.
Smith, D. R., Kumar, S. & Lee, A. (2024): Challenges in long-term biocompatibility of biomedical materials: A review. Biomaterials Science, 12(8): 1502–1517.
Yang, X., Wu, Y. & Wang, Z. (2024): Personalized biomaterial design for clinical applications: Challenges and solutions. Journal of Biomedical Materials Research, 42(5): 1804–1815.
Kaczmarek, B., Kaczmarek, M., Sionkowska, A. & Michalak, I. (2021): The effect of age and gender on immune response to biomaterials: A comparative study. International Journal of Biological Macromolecules, 180: 385–395.
Bencherif, S. A., Wang, X. & Kaplan, D. L. (2022): Immune-modulating biomaterials for tissue engineering. Advanced Healthcare Materials, 11(10): 2200014.
Wang, C., Wang, Y. & Zhang, Y. (2018): Personalized biomaterials for cancer immunotherapy. Advanced Drug Delivery Reviews, 132: 81–99.
Zhang, J., Huang, Y. & Zhang, L. (2023): Nanotechnology-based drug delivery systems in biomaterials: Challenges and future directions. Journal of Nanobiotechnology, 21(1): 120.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Türk Bilimsel Derlemeler Dergisi

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

