A REVIEW ON THE EFFECTS OF Cannabis sativa L. ON HUMAN COGNITION
Abstract views: 130 / PDF downloads: 47Keywords:
Cannabis, Cannabinoid, Alzheimer's, Marijuana, MemoryAbstract
Natural resources have been an important starting point in the medical and pharmaceutical sciences for the discovery of drug candidates. Cannabis sativa, a plant of the Cannabidaceae family, is regarded as the first psychoactive substance to be consumed. The use of cannabis has been shown to have positive effects on a variety of chronic conditions, including cancer, AIDS, and Alzheimer's. Consequently, legalizing cannabis use for both therapeutic and recreational purposes is currently the subject of heated controversy in numerous nations. C. sativa contains about 540 natural compounds known as phytocannabinoids. Among these compounds, cannabinol-type cannabidiol (CBD) and trans-Δ9-tetrahidrocannabinol (THC) are more researched than other components. According to literature studies, it is known that the dominant psychotropic component in the species is trans-Δ9-tetrahidrokanabinol, while the main non-psychoactive component is cannabidiol. In addition to its many traditional medical applications, cannabis has been shown to be effective against Alzheimer's disease-related cognitive dysfunction in numerous in vitro and in vivo investigations. Future research on cannabis extracts and components should, according to both in vitro and in vivo studies, focus on the potential advantages of cannabis extracts for both animal and human brain-cognitive health. In order to fully demonstrate the effects of cannabis and its various preparations on human cognition, longer-term clinical studies with larger numbers of subjects are needed.
References
Ben Amar, M. (2006). Cannabinoids in medicine: A review of their therapeutic potential. Journal of Ethnopharmacology 105(1-2): 1-25.
Addo, P.W., Brousseau, V.D., Morello, V., MacPherson, S., Paris, M., Lefsrud M. (2021). Cannabis chemistry, post-harvest processing methods and secondary metabolite profiling: A review. Industrial Crops and Products 1701: 13743.
Kopustinskiene, D. M., Masteikova, R., Lazauskas, R., Bernatoniene, J. (2022). Cannabis sativa L. bioactive compounds and their protective role in oxidative stress and inflammation. Antioxidants 11(4): 660.
Charitos, I.A., Gagliano-Candela, R., Santacroce, L., Bottalico, L. (2021). The Cannabis spread throughout the continents and its therapeutic use in history. Endocrine Metabolic & Immune Disorders Drug Targets 21(3): 407-417.
Crocq, M.A. (2020). History of cannabis and the endocannabinoid system. Dialogues in Clinical Neuroscience 22(3): 223-228.
Bosnjak Kuharic, D., Markovic, D., Brkovic, T., Jeric Kegalj, M., Rubic, Z., Vuica Vukasovic, A., Jeroncic, A., Puljak, L. (2021). Cannabinoids for the treatment of dementia. The Cochrane Database of Systematic Reviews 9(9).
Hanuš, L.O., Meyer, S.M., Muñoz, E., Taglialatela-Scafati, O., Appendino, G. (2016). Phytocannabinoids: a unified critical inventory. Natural Product Report, 33(12): 1357-1392.
Bonini, S A., Premoli, M., Tambaro, S., Kumar, A., Maccarinelli, G., Memo, M., Mastinu, A. (2018). Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. Journal of Ethnopharmacology 227: 300-315.
Amin, M.R., Ali, D.W. (2019). Pharmacology of medical Cannabis. Advances in Experimental Medicine and Biology, 1162: 151–165.
Mooko, T., Bala, A., Tripathy, S., Kumar, C.S., Mahadevappa, C.P., Chaudhary, S.K., Matsabisa, M.G. (2022). Cannabis sativa L. flower and bud extracts inhibited in vitro cholinesterases and β-secretase enzymes activities: possible mechanisms of cannabis use in alzheimer disease. Endocrine, Metabolic & İmmune Disorders Drug Targets 22(3): 297–309.
Raja, A., Ahmadi, S., de Costa, F., Li, N., Kerman, K. (2020). Attenuation of oxidative stress by cannabinoids and cannabis extracts in differentiated neuronal cells. Pharmaceuticals 13(11): 328.
Eggers, C., Fujitani, M., Kato, R., Smid, S. (2019). Novel cannabis flavonoid, cannflavin A displays both a hormetic and neuroprotective profile against amyloid β-mediated neurotoxicity in PC12 cells: Comparison with geranylated flavonoids, mimulone and diplacone. Biochemical Pharmacology 169:113609.
Ellman, G.L., Courtney, K.D., Andres, V., Featherstone, R.M. (1961). A new rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7: 88e95.
Rizzo, S., Tarozzi, A., Bartolini, M., Da Costa, G., Bisi, A., Gobbi, S., Belluti, F., Ligresti, A., Allarà, M., Monti, J. P., Andrisano, V., Di Marzo, V., Hrelia, P., Rampa, A. (2012). 2-Arylbenzofuran-based molecules as multipotent Alzheimer's disease modifying agents. European Journal of Medicinal Chemistry 58: 519–532.
Eubanks, L. M., Rogers, C. J., Beuscher, A. E., 4th, Koob, G. F., Olson, A. J., Dickerson, T. J., Janda, K. D. (2006). A molecular link between the active component of marijuana and Alzheimer's disease pathology. Molecular Pharmaceutics 3(6): 773-777.
Briggs G.H. (2018). Cannabidiol, a non-psychoactive marijuana component, exhibits antioxidant and neuroprotective effects in neuronal Alzheimer's cell model SH-5Y. Faseb Journal 32(1).
Iuvone, T., Esposito, G., Esposito, R., Santamaria, R., Di Rosa, M., Izzo, A. A. (2004). Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. Journal of Neurochemistry 89(1): 134-141.
Hassan, S., Eldeeb, K., Millns, P. J., Bennett, A. J., Alexander, S. P., Kendall, D. A. (2014). Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation. British Journal of Pharmacology 171(9): 2426-2439.
Esposito, G., De Filippis, D., Carnuccio, R., Izzo, A. A., Iuvone, T. (2006). The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells. Journal of Molecular Medicine (Berlin, Germany) 84(3): 253–258.
Esposito, G., De Filippis, D., Maiuri, M. C., De Stefano, D., Carnuccio, R., Iuvone, T. (2006). Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement. Neuroscience Letters, 399(1-2): 91-95.
Libro, R., Diomede, F., Scionti, D., Piattelli, A., Grassi, G., Pollastro, F., Bramanti, P., Mazzon, E., Trubiani, O. (2016). Cannabidiol modulates the expression of alzheimer's disease-related genes in mesenchymal stem cells. International Journal of Molecular Sciences 18(1): 26.
Scuderi, C., Steardo, L., Esposito, G. (2014). Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5YAPP+ cells through PPARγ involvement. Phytotherapy Research: PTR 28(7): 1007–1013.
Nallapaneni, A., Liu, J., Karanth, S., Pope, C. (2006). Modulation of paraoxon toxicity by the cannabinoid receptor agonist WIN 55,212-2. Toxicology, 227(1-2): 173–183.
Baireddy, P., Liu, J., Hinsdale, M., Pope, C. (2011). Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice. Toxicology and Applied Pharmacology 256(3): 324-329.
Amen, D. G., Darmal, B., Raji, C. A., Bao, W., Jorandby, L., Meysami, S., Raghavendra, C. S. (2017). Discriminative properties of hippocampal hypoperfusion in marijuana users compared to healthy controls: Implications for marijuana administration in alzheimer's dementia. Journal of Alzheimer's Disease: JAD 56(1): 261–273.
Sugarman, D. E., De Aquino, J. P., Poling, J., Sofuoglu, M. (2019). Feasibility and effects of galantamine on cognition in humans with cannabis use disorder. Pharmacology, Biochemistry, and Behavior 181: 86–92.
Watson, K.K., Bryan, A.D., Thayer, R.E., Ellingson, J.M., Skrzynski, C.J., Hutchison, K.E. (2022). Cannabis use and resting state functional connectivity in the aging brain. Frontiers in Aging Neuroscience 10(14): 804890.
Chen, R., Zhang, J., Fan, N., Teng, Z.Q., Wu, Y., Yang, H., Tang, Y P., Sun, H., Song, Y., Chen, C. (2013). Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling. Cell 155(5): 1154–1165.
Esposito, G., Scuderi, C., Savani, C., Steardo, L., Jr, De Filippis, D., Cottone, P., Iuvone, T., Cuomo, V., Steardo, L. (2007). Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression. British Journal of Pharmacology 151(8): 1272–1279.
Esposito, G., Scuderi, C., Valenza, M., Togna, G. I., Latina, V., De Filippis, D., Cipriano, M., Carratù, M. R., Iuvone, T., Steardo, L. (2011). Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement. PloS One, 6(12): e28668.
Martín-Moreno, A. M., Reigada, D., Ramírez, B. G., Mechoulam, R., Innamorato, N., Cuadrado, A., de Ceballos, M. L. (2011). Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer's disease. Molecular Pharmacology 79(6): 964–973.
Cheng, D., Low, J. K., Logge, W., Garner, B., Karl, T. (2014). Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1∆E9 mice. Psychopharmacology 231(15): 3009–3017.
Cheng, D., Spiro, A. S., Jenner, A. M., Garner, B., Karl, T. (2014). Long-term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer's disease transgenic mice. Journal of Alzheimer's Disease 42(4): 1383-1396.
Kreilaus, F., Przybyla, M., Ittner, L., Karl, T. (2022). Cannabidiol (CBD) treatment improves spatial memory in 14-month-old female TAU58/2 transgenic mice. Behavioural Brain Research 425: 113812.
Abdel-Salam, O. M., Youness, E. R., Khadrawy, Y. A., Sleem, A. A. (2016). Acetylcholinesterase, butyrylcholinesterase and paraoxonase 1 activities in rats treated with cannabis, tramadol or both. Asian Pacific Journal of Tropical Medicine 9(11): 1089-1094.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Türk Bilimsel Derlemeler Dergisi

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.