TOPRAKTAKİ MİKRO VE NANOPLASTİKLERİN KAYNAKLARI VE EKOTOKSİKOLOJİK ETKİLERİ

Abstract views: 30 / PDF downloads: 12

Authors

  • BETÜL ÖZTÜRK Eskişehir Osmangazi Üniversitesi

Abstract

Plastics are an indispensable part of human life. Increasing plastic production and use results in an increasing amount of plastic waste accumulating in the environment and potentially breaking down into smaller pieces (micro and nano). Pieces smaller than 5 mm are generally defined as microplastics, while pieces smaller than 0.1 mm are defined as nanoplastics. These micro and nano plastics are pollutants that cause increasing ecotoxicological concerns in both aquatic and terrestrial environments and for human health. Large amounts of micro- and nanoplastics enter the soil through numerous routes, including plastic mulching, landfill disposal, and recycling of wastewater sludge. A small number of studies in recent years have demonstrated the formation of micro and nanoplastics in the terrestrial (soil) environment and their potential dangers. However, less is known about the size and type of micro- and nanoplastics in the terrestrial environment and, in particular, how much micro- and nanoplastics accumulate in soil, their possible sources, potential ecological and toxicological effects, and their interaction with the soil environment. This review provides an overview of the sources, formation and distribution, and ecotoxicological effects of micro and nanoplastic pollution in the soil environment, as a result of limited literature evaluation.

Keywords: microplastic, nanoplastic, terrestrial environment, soil, ecotoxicity

References

KAYNAKLAR

Derraik, J. G. (2002): The pollution of the marine environment by plastic debris: a review. Marine pollution bulletin, 44(9): 842-852.

Europe, P. (2015): An analysis of European plastics production, demand and waste data. Plastics–the facts, 147.

Cole, M., Lindeque, P., Halsband, C., Galloway, T. S. (2011): Microplastics as contaminants in the marine environment: a review. Marine pollution bulletin, 62(12): 2588-2597.

Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., Svendsen, C. (2017): Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the total environment, 586: 127-141.

Liu, P., Zhan, X., Wu, X., Li, J., Wang, H., Gao, S. (2020): Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks. Chemosphere, 242: 125193.

Akdogan, Z., Guven, B. (2019): Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environmental pollution, 254: 113011.

Guo, J. J., Huang, X. P., Xiang, L., Wang, Y. Z., Li, Y. W., Li, H., Chai, Q.Y., Wong, M. H. (2020): Source, migration and toxicology of microplastics in soil. Environment international, 137: 105263.

Lu, L., Wan, Z., Luo, T., Fu, Z., Jin, Y. (2018): Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Science of the total environment, 631: 449-458.

Liu, X., Wang, J. (2020): Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia. Frontiers of Environmental Science & Engineering, 14: 1-10.

Ryan, P. G., Moore, C. J., Van Franeker, J. A., Moloney, C. L. (2009): Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526): 1999-2012.

Bouma, J. (2019): How to communicate soil expertise more effectively in the information age when aiming at the UN Sustainable Development Goals. Soil Use and Management, 35(1): 32-38.

Bouma, J., Montanarella, L., Evanylo, G. (2019): The challenge for the soil science community to contribute to the implementation of the UN Sustainable Development Goals. Soil Use and Management, 35(4): 538-546.

Ng, E. L., Lwanga, E. H., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., Chen, D. (2018): An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the total environment, 627: 1377-1388.

Geyer, R., Jambeck, J. R., Law, K. L. (2017): Production, use, and fate of all plastics ever made. Science advances, 3(7): e1700782.

Nizzetto, L., Futter, M., Langaas, S. (2016): Environmental Science Technology 50(20): 10777-10779

Nielsen, U. N., Wall, D. H., Six, J. (2015): Soil biodiversity and the environment. Annual Review of Environment and Resources, 40: 63–90.

Otake, Y., Kobayashi, T., Asabe, H., Murakami, N., Ono, K. (1995): Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. Journal of Applied Polymer Science, 56: 1789–1796.

Scheurer, M., Bigalke, M. (2018): Microplastics in Swiss floodplain soils. Environmental Science & Technology, 52: 3591–3598.

Xu, B., Liu, F., Cryder, Z., Huang, D., Lu, Z., He, Y., Wang, H., Lu, Z., Brookes, P.C., Tang, C., Gan, J., Xu, J. (2019): Microplastics in the soil environment: Occurrence, risks, interactions and fate - A review. Critical Reviews in Environmental Science and Technology, 50: 2175–2222.

O'Connor, D., Pan, S., Shen, Z., Song, Y., Jin, Y., Wu, W., Hou, D. (2019): Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environmental Pollution, 249: 527–534.

Hüffer, T., Praetorius, A., Wagner, S., Von der Kammer, F., Hofmann, T. (2017): Microplastic exposure assessment in aquatic environments: learning from similarities and differences to engineered nanoparticles. Environmental Science & Technology 51(5): 2499–2507.

Cai, L., Hu, L., Shi, H., Ye, J., Zhang, Y., Kim, H. (2018): Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics. Chemosphere, 197: 142–151.

Lowry, G. V., Gregory, K. B., Apte, S. C., Lead, J. R. (2012): Transformations of nanomaterials in the environment. Environmental Science & Technology, 46: 6893–6899.

Gao, D., Li, X., Liu, H. (2020): Source, occurrence, migration and potential environmental risk of microplastics in sewage sludge and during sludge amendment to soil. Science of the Total Environment, 742: 140355.

Yan, X., Yang, X., Tang, Z., Fu, J., Chen, F., Zhao, Y., Ruan, L., Yang, Y. (2020): Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes. Environmental Pollution, 262: 114270.

Zhao, H., Li, J., Ma, X., Huo, W., Xu, S., Cai, Z. (2018): Simultaneous determination of bisphenols, benzophenones and parabens in human urine by using UHPLC-TQMS. Chinese Chemical Letters, 29: 102–106.

Karapanagioti, H. K., Ogata, Y., Takada, H. (2010): Eroded plastic pellets as monitoring tools for polycyclic aromatic hydrocarbons (PAH): laboratory and field studies. Global Nest Journal, 12(3):327-334

Liu, P., Zhan, X., Wu, X., Li, J., Wang, H., Gao, S. (2020): Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks. Chemosphere, 242: 125193.

Ma, J., Zhao, J., Zhu, Z., Li, L., Yu, F. (2019): Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride. Environmental Pollution, 254: 113104.

Rillig, M. C. (2012): Microplastic in terrestrial ecosystems and the soil? Environmental Science & Technology, 46: 6453–6454.

Helmberger, M. S., Tiemann, L. K., Grieshop, M. J. (2020): Towards an ecology of soil microplastics. Functional Ecology, 34: 550–560.

Rillig, M. C., Ziersch, L., Hempel, S. (2017): Microplastic transport in soil by earthworms. Scientific Reports, 7: 1–6.

Zhang, L., Xie, Y., Liu, J., Zhong, S., Qian, Y., Gao, P. (2020): An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environmental Science and Technology, 54: 4248–4255.

Koca, H. D., Doganay, S., Turgut, A., Tavman, I. H., Saidur, R., Mahbubul, I. M. (2018): Effect of particle size on the viscosity of nanofluids: A review. Renewable and Sustainable Energy Reviews, 82: 1664-1674.

Hüffer, T., Metzelder, F., Sigmund, G., Slawek, S., Schmidt, T. C., Hofmann, T. (2019): Polyethylene microplastics influence the transport of organic contaminants in soil. Science of the Total Environment, 657: 242–247.

Singh, B., Sharma, N. (2008): Mechanistic implications of plastic degradation. Polymer Degradation and Stability, 93: 561–584.

Zhu, F., Zhu, C., Wang, C., Gu, C. (2019): Occurrence and ecological impacts of microplastics in soil systems: A review. Bulletin of Environmental Contamination and Toxicology, 102: 741–749.

Bläsing, M., Amelung, W. (2018): Plastics in soil: Analytical methods and possible sources. Science of the total environment, 612: 422-435.

Chae, Y., An, Y. J. (2017): Effects of micro-and nanoplastics on aquatic ecosystems: Current research trends and perspectives. Marine pollution bulletin, 124(2): 624-632.

Okoffo, E. D., O'Brien, S., Ribeiro, F., Burrows, S. D., Toapanta, T., Rauert, C., O'Brien, J. W., Tscharke, B.J., . Wang, X., Thomas, K. V. (2021): Plastic particles in soil: state of the knowledge on sources, occurrence and distribution, analytical methods and ecological impacts. Environmental Science: Processes & Impacts, 23(2): 240-274.

Nizzetto, L., Futter, M., Langaas, S. (2016): Are agricultural soils dumps for microplastics of urban origin? Environmental Science & Technology, 50(20): 10777–10779

Okoffo, E. D., O'Brien, S., O'Brien, J. W., Tscharke, B. J., Thomas, K. V. (2019): Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate. Environmental Science: Water Research & Technology, 5(11): 1908-1931.

Qi, Y., Yang, X., Pelaez, A. M., Huerta Lwanga, E., Beriot, N., Gertsen, H., Garbeva, P., Geissen, V. (2018): Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 645: 1048–1056.

He, D., Luo, Y., Lu, S., Liu, M., Song, Y., Lei, L. (2018): Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109: 163-172.

Allen, S., Allen, D., Phoenix, V. R., Le Roux, G., Durántez Jiménez, P., Simonneau, A., Binet, S., Galop, D. (2019): Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12(5): 339-344.

Van den Berg, P., Huerta-Lwanga, E., Corradini, F., Geissen, V. (2020): Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environmental Pollution, 261, 114198.

Hurley, R. R., Nizzetto, L. (2018): Fate and occurrence of micro (nano) plastics in soils: Knowledge gaps and possible risks. Current Opinion in Environmental Science & Health, 1, 6–11.

Okoffo, E. D., O'Brien, S., Ribeiro, F., Burrows, S. D., Toapanta, T., Rauert, C., Thomas, K. V. (2021): Plastic particles in soil: state of the knowledge on sources, occurrence and distribution, analytical methods and ecological impacts. Environmental Science: Processes & Impacts, 23(2): 240-274.

Tarara J M (2000): Microclimate modification with plastic mulch. HortScience, 35(2): 169–180

Summers, C. G., Stapleton, J. J. (2002): Use of UV reflective mulch to delay the colonization and reduce the severity of Bemisia argentifolii (Homoptera: Aleyrodidae) infestations in cucurbits. Crop Protection (Guildford, Surrey), 21(10): 921–928

Dai, J., Dong, H. (2014): Intensive cotton farming technologies in China: Achievements, challenges and countermeasures. Field Crops Research, 155: 99–110

Yan, C., Mei, X., He, W. (2010): Present situation of residue pollution of mulching plastic film and controlling measures. Transactions of the Chinese Society of Agricultural Engineering (Beijing), 22: 269–272.

Guo, B., Meng, J., Wang, X., Yin, C., Hao, W., Ma, B., Tao, Z. (2019): Quantification of pesticide residues on plastic mulching films in typical farmlands of the North China. Frontiers of Environmental Science & Engineering, 14: 2.

Yan, C., He, W., Turner, N.C. (2014): Plastic-film mulch in Chinese agriculture: Importance and problems. World Agriculture, 4: 32–36.

Van Sebille, E. (2015): The oceans’ accumulating plastic garbage. Physics Today, 68: 60–61.

Crossman, J., Hurley, R. R., Futter, M., Nizzetto, L. (2020): Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment. Science of The Total Environment, 724: 138334.

Batstone, D., Dale, G., Randall, H. W., Tao, E., Water, M. (2020): ANZBP Preliminary Report on Microplastics Risk for the Australian and New Zealand Biosolids Industry July 2020.

Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., Geissen, V. (2019): Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the total environment, 671: 411-420.

Bläsing, M., Amelung, W. (2018): Plastics in soil: Analytical methods and possible sources. Science of the total environment, 612: 422-435.

Fan, Y., Shi, J., Gao, L. (2019): Source and detection of microplasticcs in soil systems. Journal of Agro-Environment Science, 33: 28–31.

Zhang, S., Han, B., Sun, Y., Wang, F. (2020). Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. Journal of Hazardous Materials, 388, 121775.

Lambert, S., Wagner, M. (2016): Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere, 145: 265–268.

Weinstein, J. E., Crocker, B. K., Gray, A. D. (2016): From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environmental Toxicology and Chemistry, 35: 1632–1640.

Sun, C., Jiang, F., Li, J., Zheng, L. (2016): The research progress in source, distribution, ecological and environmental effects of marine microplastics. Advances in Marine Science, 34: 449–461.

Turrell, W. R. (2018): A simple model of wind-blown tidal strandlines: How marine litter is deposited on a mid-latitude, macro-tidal shelf sea beach. Marine Pollution Bulletin, 137: 315–330.

He, D., Luo, Y., Lu, S., Liu, M., Song, Y., Lei, L. (2018): Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry, 109: 163–172.

Gong, J., Xie, P. (2020): Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics. Chemosphere, 254: 126790.

Bouwmeester, H., Hollman, P. C. H., Peters, R. J. B. (2015): Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: Experiences from nanotoxicology. Environmental Science & Technology, 49: 8932–8947.

Boyle, K., Örmeci, B. (2020): Microplastics and nanoplastics in the freshwater and terrestrial environment: A review. Water, 12: 2633.

Kole, P. J., Löhr, A. J., Van Belleghem, F. G., Ragas, A. M. (2017): Wear and tear of tyres: A stealthy source of microplastics in the environment. International Journal of Environmental Research and Public Health, 14: 1265.

Kreider, M. L., Panko, J. M., McAtee, B. L., Sweet, L. I., Finley, B. L. (2010): Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies. Science of the Total Environment, 408: 652–659.

Ribeiro, F., Garcia, A. R., Pereira, B. P., Fonseca, M., Mestre, N. C., Fonseca, T. G., Ilharco, L.M, Bebianno, M. J. (2017): Microplastics effects in Scrobicularia plana. Marine pollution bulletin, 122(1-2): 379-391.

Ribeiro, F., O'Brien, J. W., Galloway, T., Thomas, K. V. (2019): Accumulation and fate of nano-and micro-plastics and associated contaminants in organisms. TrAC Trends in analytical chemistry, 111: 139-147.

Hüffer, T., Metzelder, F., Sigmund, G., Slawek, S., Schmidt, T. C., Hofmann, T. (2019): Polyethylene microplastics influence the transport of organic contaminants in soil. Science of the Total Environment, 657: 242-247.

Judy, J. D., Williams, M., Gregg, A., Oliver, D., Kumar, A., Kookana, R., Kirby, J. K. (2019): Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota. Environmental Pollution, 252: 522-531.

Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., Van Der Ploeg, M., Besseling, E., Koelmans, A. A., Geissen, V. (2016): Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental science & technology, 50(5): 2685-2691.

Ju, H., Zhu, D., Qiao, M. (2019): Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida. Environmental Pollution, 247: 890-897.

Crossman, J., Hurley, R. R., Futter, M., Nizzetto, L. (2020): Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment. Science of The Total Environment, 724: 138334.

Wang, X., Bolan, N., Tsang, D. C. W., Sarkar, B., Bradney, L., Li, Y. (2021): A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications. Journal of Hazardous Materials, 402: 123496.

Cai, L., Hu, L., Shi, H., Ye, J., Zhang, Y., Kim, H. (2018): Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics. Chemosphere, 197: 142–151.

Wang, L., Wu, W., Bolan, N. S., Tsang, D. C. W., Li, Y., Qin, M., Hou, D. (2021): Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. Journal of Hazardous Materials, 401: 123415.

Bradl, H. B. (2004): Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277: 1–18.

Jiang, L., Liu, Y., Zeng, G., Xiao, F., Hu, X., Hu, X., Wang, H., Li, T., Zhou, L., Tan, X. (2016): Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chemical Engineering Journal, 284: 93–102.

Tong, X., Li, Y., Zhang, F., Chen, X., Zhao, Y., Hu, B., Zhang, X. (2019): Adsorption of 17β-estradiol onto humic-mineral complexes and effects of temperature, pH, and bisphenol A on the adsorption process. Environmental Pollution, 254: 112924.

Hou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C. W., Sparks, D. L., Yamauchi, Y., Rinklebe, J., Ok, Y. S. (2020): Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1: 366–381.

Wang, F., Yang, W., Cheng, P., Zhang, S., Zhang, S., Jiao, W., Sun, Y. (2019): Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere, 235: 1073–1080.

Yang, J., Cang, L., Sun, Q., Dong, G., Ata Ul Karim, S. T., Zhou, D. (2019): Effects of soil environmental factors and UV aging on Cu2+ adsorption on microplastics. Environmental Science and Pollution Research, 26: 23027–23036.

Wang, W., Wang, J. (2018): Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics. Chemosphere, 193: 567–573.

Chen, X., Gu, X., Bao, L., Ma, S., Mu, Y. (2020): Comparison of adsorption and desorption of triclosan between microplastics and soil particles. Chemosphere, 263: 127947.

Batel, A., Linti, F., Scherer, M., Erdinger, L., Braunbeck, T. (2016): Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environmental Toxicology and Chemistry, 35: 1656–1666.

Li, M., He, L., Zhang, M., Liu, X., Tong, M., Kim, H. (2019): Cotransport and deposition of iron oxides with different-sized plastic particles in saturated quartz sand. Environmental Science & Technology, 53: 3547–3557.

Chiellini, E., Corti, A., Swift, G. (2003): Biodegradation of thermally-oxidized, fragmented low-density polyethylenes. Polymer Degradation and Stability, 81: 341–351.

Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., Ploeg, M., Besseling, E., Koelmans, A. A., Geissen, V. (2016): Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50: 2685–2691.

Rillig, M. C., Lehmann, A., de Souza-Machado, A. A., Yang, G. (2019): Microplastic effects on plants. New Phytologist, 223: 1066–1070.

Powell, J. R., Rillig, M. C. (2018): Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist, 220: 1059–1075.

Akdogan, Z., Guven, B. (2019): Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environmental Pollution, 254: 113011.

Maaß, S., Daphi, D., Lehmann, A., Rillig, M. C. (2017): Transport of microplastics by two collembolan species. Environmental Pollution, 225: 456–459.

Lambert, S., Sinclair, C., Boxall, A. (2014): Occurrence, degradation, and effect of polymer-based materials in the environment. Reviews of Environmental Contamination and Toxicology, 227: 1–53.

Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., Ploeg, M., Besseling, E., Koelmans, A. A., Geissen, V. (2017): Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220: 523–531.

Teuten, E. L., Saquing, J. M., Knappe, D. R. U., Barlaz, M. A., Jonsson, S., Björn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet, P. H., Tana, T. S., Prudente, M., Boonyatumanond, R., Zakaria, M. P., Akkhavong, K., Ogata, Y., Hirai, H., Iwasa, S., Mizukawa, K., Hagino, Y., Imamura, A., Saha, A., Takada, H. (2009): Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364: 2027–2045.

Liu, J., Zhang, T., Tian, L., Liu, X., Qi, Z., Ma, Y., Chen, W. (2019): Aging significantly affects mobility and contaminant-mobilizing ability of nanoplastics in saturated loamy sand. Environmental Science & Technology, 53: 5801–5815.

Šunta, U., Prosenc, F., Trebše, P., Bulc, T. G., Kralj, M. B. (2020): Adsorption of acetamiprid, chlorantraniliprole and flubendiamide on different type of microplastics present in alluvial soil. Chemosphere, 261: 127762.

Gardette, J. L., Lemaire, J. (1991): Photothermal and thermal oxidations of rigid, plasticized and pigmented poly(vinyl chloride). Polymer Degradation and Stability, 34: 135–167.

Fechine, G. J. M., Rabello, M. S., Souto Maior, R. M., Catalani, L. H. (2004): Surface characterization of photodegraded poly(ethylene terephthalate). The effect of ultraviolet absorbers. Polymer, 45: 2303–2308.

Diepens, M., Gijsman, P. (2007): Photodegradation of bisphenol A polycarbonate. Polymer Degradation and Stability, 92: 397–406.

Yousif, E., Haddad, R. (2013): Photodegradation and photostabilization of polymers, especially polystyrene: Review. SpringerPlus, 2: 1–32.

Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., Svendsen, C. (2017): Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the total environment, 586: 127-141.

Satoto, R., Subowo, W. S., Yusiasih, R., Takane, Y., Watanabe, Y., Hatakeyama, T. (1997): Weathering of high-density polyethylene in different latitudes. Polymer Degradation and Stability, 56: 275–279.

Leed, R., Smithson, M. (2019): Ecological effects of soil microplastic pollution. Science Insights, 30: 70–84.

Bandow, N., Will, V., Wachtendorf, V., Simon, F. G. (2017): Contaminant release from aged microplastic. Environmental Chemistry, 14: 394–405.

Browne, M. A., Niven, S. J., Galloway, T. S., Rowland, S. J., Thompson, R. C. (2013): Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Current Biology, 23: 2388–2392.

Slack, R. J., Gronow, J. R., Voulvoulis, N. (2005): Household hazardous waste in municipal landfills: Contaminants in leachate. Science of the Total Environment, 337: 119–137.

Yamamoto, T., Yasuhara, A., Shiraishi, H., Nakasugi, O. (2001): Bisphenol A in hazardous waste landfill leachates. Chemosphere, 42: 415–418.

Hu, X., Wen, B., Zhang, S., Shan, X. (2005): Bioavailability of phthalate congeners to earthworms (Eisenia fetida) in artificially contaminated soils. Ecotoxicology and Environmental Safety, 62: 26–34.

Wang, N., Zhao, H., Ji, X., Li, X., Wang, B. (2014): Gold nanoparticlesenhanced bisphenol A electrochemical biosensor based on tyrosinase immobilized onto self-assembled monolayers-modified gold electrode. Chinese Chemical Letters, 25: 720–722.

Paraskevopoulou, D., Achilias, D. S., Paraskevopoulou, A. (2012): Migration of styrene from plastic packaging based on polystyrene into food simulants. Polymer International, 61: 141–148.

Rillig, M. C., Lehmann, A., Ryo, M., Bergmann, J. (2019): Shaping up: Toward considering the shape and form of pollutants. Environmental Science and Technology, 53: 7925–7926.

De Souza Machado, A. A., Lau, C. W., Till, J., Kloas, W., Lehmann, A., Becker, R., Rillig, M. C. (2018): Impacts of microplastics on the soil biophysical environment. Environmental science & technology, 52(17): 9656-9665.

Hou, J., Xu, X., Lan, L., Miao, L., Xu, Y., You, G., Liu, Z. (2020): Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors. Environmental Pollution, 263: 114499.

Kalka, S., Huber, T., Steinberg, J., Baronian, K., Müssig, J., Staiger, M. P. (2014): Biodegradability of all-cellulose composite laminates. Composites Part A: Applied Science and Manufacturing, 59: 37–44.

Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., Nava Saucedo, J. (2008): Polymer biodegradation: Mechanisms and estimation techniques - A review. Chemosphere, 73: 429–442.

Chae, Y., An, Y. J. (2018): Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental pollution, 240: 387-395.

Lei, L., Wu, S., Lu, S., Liu, M., Song, Y., Fu, Z., Shi, H., Raley-Susman, K. M., He, D. (2018): Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Science of the Total Environment, 619– 620: 1–8.

Kokalj, A. J., Horvat, P., Skalar, T., Kržan, A. (2018): Plastic bag and facial cleanser derived microplastic do not affect feeding behaviour and energy reserves of terrestrial isopods. Science of the Total Environment, 615: 761-766.

Wan, Y., Wu, C., Xue, Q., Hui, X. (2019): Effects of plastic contamination on water evaporation and desiccation cracking in soil. Science of the Total Environment, 654: 576-582.

Thomas, D., Schütze, B., Heinze, W. M., Steinmetz, Z. (2020): Sample preparation techniques for the analysis of microplastics in soil—a review. Sustainability, 12(21): 9074.

Downloads

Published

2024-06-27

How to Cite

ÖZTÜRK, B. (2024). TOPRAKTAKİ MİKRO VE NANOPLASTİKLERİN KAYNAKLARI VE EKOTOKSİKOLOJİK ETKİLERİ. Türk Bilimsel Derlemeler Dergisi, 17(1), 60–78. Retrieved from https://derleme.gen.tr/index.php/derleme/article/view/474

Issue

Section

Articles