NANOTEKNOLOJİ İLE KARSİNOGENEZ SÜRECİNDE miRNA’LARIN ROLÜ VE PROFİLLENMESİ

Abstract views: 345 / PDF downloads: 182

Authors

  • Yeşim Dağlıoğlu
  • Betül Öztürk Eskişehir Osmangazi Üniversitesi

Keywords:

miRNA, , Kanser, , RNA, , Nanoteknoloji, , Onkogen, , Terapötik, , Tümör süpresör

Abstract

MikroRNA'lar (miRNA'lar), protein kodlayan genlerin, çeşitli onkogenlerin veya tümör baskılayıcı genlerin ekspresyonunu düzenleyen, protein kodlamayan küçük RNA'ların çok yeni bir sınıfıdır. Farklı kanser türlerinin farklı aşamalarda çeşitli miRNA'ların benzersiz ekspresyon profilleri, miRNA'ların hastalık teşhis ve tedavisinde yeni biyobelirteçler olarak işlev görebileceğini ve miRNA gen tedavisi için yeni bir strateji sunabileceği düşünülmektedir. miRNA'nın normal hücresel ve hastalık süreçlerindeki rolünün araştırılması son yıllarda bilim insanları arasında oldukça popüler hale gelmiştir. MiRNA'ların ekspresyon profili, kanser hastalarında tümör başlangıcını, ilerlemesini ve tedaviye yanıtı değerlendirmek için teşhis ve prognostik biyobelirteçler olarak kanser kliniklerine girmiştir. Bununla birlikte, anti-miRNA'lar ve antisenseoligonükleotitler, araştırma ve klinik amaçlar için in vitro ve in vivo olarak spesifik miRNA ekspresyonunu inhibe etmek için kullanılmıştır. Bu derlemede, miRNA’ların kanserle ilişkisi (aşağı/yukarı regülasyonu), onkogenler veya tümör süpresörler (baskılayıcılar) olarak işlevleri, terapötikler olarak kullanımı ve bu uygulamaların nanoteknoloji tabanlı miRNA teknolojilerinden bahsedilmiştir.

References

Garzon, R., Calin, G. A., Croce, C. M. (2009): MicroRNAs in cancer. Annual Review of Medicine, 60: 167-179. doi: 10.1146/annurev.med.59.053006.104707

Bruce, J. P., Hui, A. B., Shi, W., Perez-Ordonez, B., Weinreb, I., Xu, W., Haibe-Kains, B., Waggott, D.M., Boutros, P.C., O'Sullivan, B., Waldron, J., Huang, S.H., Chen, E.X., Gilbert, C., Liu, F. F. (2015): Identification of a microRNA signature associated with risk of distant metastasis in nasopharyngeal carcinoma. Oncotarget, 6(6): 4537. doi: 10.18632/oncotarget.3005

Esquela-Kerscher, A., Slack, F. J. (2006): Oncomirs—microRNAs with a role in cancer. Nature Reviews Cancer, 6(4): 259-269. doi: 10.1038/nrc1840

Jeansonne, D., DeLuca, M., Marrero, L., Lassak, A., Pacifici, M., Wyczechowska, D., Wilk, A., Reiss, K., Peruzzi, F. (2015): Anti-tumoral effects of miR-3189-3p in glioblastoma. Journal of Biological Chemistry, 290(13): 8067-8080. doi: 10.1074/jbc.M114.633081

Pinatel, E. M., Orso, F., Penna, E., Cimino, D., Elia, A. R., Circosta, P., Dentelli, P., Brizzi, M.F., Provero, P., Taverna, D. (2014): miR-223 is a coordinator of breast cancer progression as revealed by bioinformatics predictions. PLoS One, 9(1): e84859. doi: 10.1371/journal.pone.0084859

Ben-Hamo, R., Efroni, S. (2015): MicroRNA regulation of molecular pathways as a generic mechanism and as a core disease phenotype. Oncotarget, 6(3): 1594. doi: 10.18632/oncotarget.2734

Sotiropoulou, G., Pampalakis, G., Lianidou, E., Mourelatos, Z. (2009): Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. Rna, 15(8): 1443-1461. doi:10.1261/rna.1534709

Lewis, B. P., Burge, C. B., Bartel, D. P. (2005): Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. cell, 120(1): 15-20. doi: 10.1016/j.cell.2004.12.035

Xie, X., Lu, J., Kulbokas, E. J., Golub, T. R., Mootha, V., Lindblad-Toh, K., Lander, E.S., Kellis, M. (2005): Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature, 434(7031): 338-345. doi: 10.1038/nature03441

Ambros, V., Chen, X. (2007): The regulation of genes and genomes by small RNAs. Development, 134(9): 1635–1641. doi.org/10.1242/dev.002006

Carrington, J. C., Ambros, V. (2003): Role of microRNAs in plant and animal development. Science, 301(5631): 336-338. doi: 10.1126/science.1085242

Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich F., Croce, C. M. (2002): Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, 99(24): 15524-15529. doi: 10.1073/pnas.242606799

Lawrie, C. H., Gal, S., Dunlop, H. M., Pushkaran, B., Liggins, A. P., Pulford, K., Banham, A. H, Pezzella, F., Boultwood, J., Wainscoat J.S, Hatton, C.S., Harris, A. L. (2008): Detection of elevated levels of tumour‐associated microRNAs in serum of patients with diffuse large B‐cell lymphoma. British Journal of Haematology, 141(5): 672-675. doi: 10.1111/j.1365-2141.2008.07077.x

Zhang, B., Farwell, M. A. (2008): microRNAs: a new emerging class of players for disease diagnostics and gene therapy. Journal of Cellular and Molecular Medicine, 12(1): 3-21. doi:10.1111/j.1582-4934.2007.00196.x

Lee, R. C., Feinbaum, R. L., Ambros, V. (1993): The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. cell, 75(5): 843-854. doi:10.1016/0092-8674(93)90529-Y

Chalfie, M., Horvitz, H. R., Sulston, J. E. (1981): Mutations that lead to reiterations in the cell lineages of C. elegans. Cell, 24(1): 59-69. doi: 10.1016/0092-8674(81)90501-8

Wightman, B., Ha, I., Ruvkun, G. (1993): Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5): 855-862. doi: 10.1016/0092-8674(93)90530-4

Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H.R., Ruvkun, G. (2000): The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772): 901-906. doi: 10.1038/35002607

Lau, N. C., Lim, L. P., Weinstein, E. G., Bartel, D. P. (2001): An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543): 858-862. doi: 10.1126/science.1065062

Lagos-Quintana, M., Rauhut, R., Lendeckel, W., Tuschl, T. (2001): Identification of novel genes coding for small expressed RNAs. Science, 294(5543): 853-858. doi: 10.1126/science.1064921

Griffiths‐Jones, S. (2004): The microRNA registry. Nucleic acids research, 32(suppl_1): D109-D111. doi: 10.1093/nar/gkh023

Griffiths-Jones, S., Grocock, R. J., Van Dongen, S., Bateman, A., Enright, A. J. (2006): miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 34(suppl_1): D140-D144. doi: 10.1093/nar/gkj112

Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., Hannon, G. J. (2004): Processing of primary microRNAs by the Microprocessor complex. Nature, 432(7014): 231-235. doi: 10.1038/nature03049

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Rådmark, O., Kim, S., Kim, V. N. (2003): The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956): 415-419. doi: 10.1038/nature01957

Bohnsack, M. T., Czaplinski, K., Görlich, D. (2004): Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 10(2): 185-191. doi:10.1261/rna.5167604

Bartel, D. P. (2004): MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2): 281-297. doi: 10.1016/S0092-8674(04)00045-5

Ørom, U. A., Nielsen, F. C., Lund, A. H. (2008): MicroRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Molecular Cell, 30(4): 460-471. doi: 10.1016/j.molcel.2008.05.001

Qin, W., Shi, Y., Zhao, B., Yao, C., Jin, L., Ma, J., Jin, Y. (2010): miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PloS one, 5(2): e9429. 10.1371/journal.pone.0009429

Reddy, K. B. (2015): MicroRNA (miRNA) in cancer. Cancer Cell International, 15(1): doi: 1-6. 10.1186/s12935-015-0185-1

Cummins, J. M., Velculescu, V. E. (2006): Implications of micro-RNA profiling for cancer diagnosis. Oncogene, 25(46): 6220-6227. doi:10.1038/sj.onc.1209914

Iorio, M. V., Ferracin, M., Liu, C. G., Veronese, A., Spizzo, R., Sabbioni, S., Magri, E., Pedriali, M., Fabbri, M., Campiglio, M., Ménard, S., Palazzo, J.P., Rosenberg, A., Musiani, P., Volinia, S., Nenci, I., Calin, G.A., Querzoli, P., Negrini, M., Croce, C. M. (2005): MicroRNA gene expression deregulation in human breast cancer. Cancer Research, 65(16): 7065-7070. doi:10.1158/0008-5472.CAN-05-1783

Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., Harano, T., Yatabe, Y., NaginoM, Nimura, Y., Mitsudomi, T., Takahashi, T. (2004): Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 64(11): 3753-3756. doi:10.1158/0008-5472.CAN-04-0637

Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K.L., Brown, D., Slack, F. J. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635-647. doi:10.1016/j.cell.2005.01.014

Lee, Y. S., Dutta, A. (2007): The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes & development, 21(9): 1025-1030. doi:10.1101/gad.1540407

Brueckner, B., Stresemann, C., Kuner, R., Mund, C., Musch, T., Meister, M., Sültmann, H., Lyko, F. (2007): The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Research, 67(4): 1419-1423. doi:10.1158/0008-5472.CAN-06-4074

Fedele, M., Battista, S., Manfioletti, G., Croce, C. M., Giancotti, V., Fusco, A. (2001): Role of the high mobility group A proteins in human lipomas. Carcinogenesis, 22(10): 1583-1591. doi: 10.1093/carcin/22.10.1583

Stenman, G. (2005, June). Fusion oncogenes and tumor type specificity—insights from salivary gland tumors. In Seminars in Cancer Biology 15(3): 224-235. doi: 10.1016/j.semcancer.2005.01.002

Fedele, M., Battista, S., Kenyon, L., Baldassarre, G., Fidanza, V., Klein-Szanto, A. J., Parlow, A. F., Visone, R., Pierantoni, G. M., Outwater, E., Santoro, M., Croce, C. M., Fusco, A. (2002): Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene, 21(20): 3190-3198.

Mayr, C., Hemann, M. T., Bartel, D. P. (2007): Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315(5818): 1576-1579. doi:10.1126/science.1137999

Tsang, J. S., Ebert, M. S., van Oudenaarden, A. (2010): Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Molecular Cell, 38(1): 140-153. doi: 10.1016/j.molcel.2010.03.007

Iorio, M. V., Croce, C. M. (2012): MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO molecular medicine, 4(3): 143-159. doi: 10.1002/emmm.201100209

Izumchenko, E., Chang, X., Michailidi, C., Kagohara, L., Ravi, R., Paz, K., Brait, M., Hoque, M.O., Ling, S., Bedi, A., Sidransky, D. (2014): The TGFβ–miR200–MIG6 pathway orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors. Cancer research, 74(14): 3995-4005. doi: 10.1158/0008-5472.CAN-14-0110

Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A. A., Downing, J. R., Jacks, V., Horvitz, H. R., Golub, T. R. (2005): MicroRNA expression profiles classify human cancers. Nature, 435(7043): 834-838. doi: 10.1038/nature03702

Lagana, A., Russo, F., Sismeiro, C., Giugno, R., Pulvirenti, A., Ferro, A. (2010): Variability in the incidence of miRNAs and genes in fragile sites and the role of repeats and CpG islands in the distribution of genetic material. PloS one, 5(6): e11166. doi:10.1371/journal.pone.0011166

Lamy, P., Andersen, C. L., Dyrskjøt, L., Tørring, N., Ørntoft, T., Wiuf, C. (2006): Are microRNAs located in genomic regions associated with cancer? British journal of Cancer, 95(10): 1415-1418. doi: 10.1038/sj.bjc.6603381

Wynendaele, J., Böhnke, A., Leucci, E., Nielsen, S. J., Lambertz, I., Hammer, S., Sbrzesny, N., Kubitza, D., Wolf, A., Gradhand, E., Balschun, K., Braicu, I., Sehouli, J., Darb-Esfahani, S., Denkert, C., Thomssen, C., Hauptmann, S., Lund, A., Marine, J-C., Bartel, F. (2010): An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Research, 70(23): 9641-9649. doi: 10.1158/0008-5472.CAN-10-0527

Mishra, P. J., Mishra, P. J., Banerjee, D., Bertino, J. R. (2008): MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: Introducing microRNA pharmacogenomics. Cell Cycle, 7(7): 853-858. doi: 10.4161/cc.7.7.5666

Chin, L. J., Ratner, E., Leng, S., Zhai, R., Nallur, S., Babar, I., Muller, R., Straka, E., Su, L., Burki, E. A., Crowell, R.E., Patel, R., Kulkarni, T., Homer, R., Zelterman, D., Kidd, K. K., Zhu, Y., Christiani, D. C., Belinsky, S. A., Slack, F.J., Weidhaas, J. B. (2008): A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non–small cell lung cancer risk. Cancer Research, 68(20): 8535-8540. doi: 10.1158/0008-5472.CAN-08-2129

Lehmann, U., Hasemeier, B., Christgen, M., Müller, M., Römermann, D., Länger, F., Kreipe, H. (2008): Epigenetic inactivation of microRNA gene hsa‐mir‐9‐1 in human breast cancer. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 214(1): 17-24. doi: doi.org/10.1002/path.2251

Saito, Y., Liang, G., Egger, G., Friedman, J. M., Chuang, J. C., Coetzee, G. A., Jones, P. A. (2006): Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell, 9(6): 435-443. doi: 10.1016/j.ccr.2006.04.020

Han, L., Witmer, P. D. W., Casey, E., Valle, D., Sukumar, S. (2007): DNA methylation regulates MicroRNA expression. Cancer Biology & Therapy, 6(8): 1290-1294. doi: 10.4161/cbt.6.8.4486

Lujambio, A., Calin, G. A., Villanueva, A., Ropero, S., Sánchez-Céspedes, M., Blanco, D., Montuenga, L. M., Rossi, S., Nicoloso, M. S., Faller, W. J., Gallagher, W. M., Eccles, S.A., Croce, C.M., Esteller, M. (2008): A microRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences, 105(36): 13556-13561. doi: 10.1073/pnas.0803055105

Bandres, E., Agirre, X., Bitarte, N., Ramirez, N., Zarate, R., Roman‐Gomez, J., Prosper, F., Garcia‐Foncillas, J. (2009): Epigenetic regulation of microRNA expression in colorectal cancer. International Journal of Cancer, 125(11): 2737-2743. doi: 10.1002/ijc.24638

Neves, R., Scheel, C., Weinhold, S., Honisch, E., Iwaniuk, K. M., Trompeter, H. I., Niederacher, D., Wernet, P., Santourlidis, S., Uhrberg, M. (2010): Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Research Notes, 3(1): 1-7. doi:10.1186/1756-0500-3-219

Scott, G. K., Mattie, M. D., Berger, C. E., Benz, S. C., Benz, C. C. (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Research, 66(3): 1277-1281. 10.1158/0008-5472.CAN-05-3632

Lee, Y., Jeon, K., Lee, J. T., Kim, S., Kim, V. N. (2002): MicroRNA maturation: stepwise processing and subcellular localization. The EMBO Journal, 21(17): 4663-4670. doi: 10.1093/emboj/cdf476

Ozsolak, F., Poling, L. L., Wang, Z., Liu, H., Liu, X. S., Roeder, R. G., Zhang, X., Song, J. S., Fisher, D. E. (2008): Chromatin structure analyses identify miRNA promoters. Genes & Development, 22(22): 3172-3183.

Rüegger, S., Großhans, H. (2012): MicroRNA turnover: when, how, and why. Trends in Biochemical Sciences, 37(10): 436-446. doi: 10.1016/j.tibs.2012.07.002

Upton, J. P., Wang, L., Han, D., Wang, E. S., Huskey, N. E., Lim, L., Truitt, M., Mcmanus, M. T., Ruggero, D., Goga, A., Papa, F., Oakes, S. A. (2012). IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science, 338(6108): 818-822. doi: 10.1126/science.1226191

Chang, T. C., Yu, D., Lee, Y. S., Wentzel, E. A., Arking, D. E., West, K. M., Dang, C. V., Tikhonenko, A., Mendell, J. T. (2008): Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 40(1): 43-50. 10.1038/ng.2007.30

Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., Furth, E. E., Lee, W. M., Enders, G. H., Mendell, J. T., Thomas-Tikhonenko, A. (2006): Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38(9): 1060-1065. 10.1038/ng1855

Bui, T. V., Mendell, J. T. (2010): Myc: maestro of microRNAs. Genes & Cancer, 1(6): 568-575. doi: 10.1177/1947601910377491

Kent, O. A., Chivukula, R. R., Mullendore, M., Wentzel, E. A., Feldmann, G., Lee, K. H., Liu, S., Leach, S. D., Maitra, A., Mendell, J. T. (2010): Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes & Development, 24(24): 2754-2759. doi:10.1101/gad.1950610

Hermeking, H. (2012): MicroRNAs in the p53 network: micromanagement of tumour suppression. Nature Reviews Cancer, 12(9): 613-626. doi: 10.1038/nrc3318

Jansson, M. D., Lund, A. H. (2012): MicroRNA and cancer. Molecular Oncology, 6(6): 590-610. 10.1016/j.molonc.2012.09.006

Tazawa, H., Tsuchiya, N., Izumiya, M., Nakagama, H. (2007): Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proceedings of the National Academy of Sciences, 104(39): 15472-15477. doi: 10.1073/pnas.0707351104

Harris, L., Fritsche, H., Mennel, R., Norton, L., Ravdin, P., Taube, S., Somerfield, M. R., Hayes, D. F., Bast Jr, R. C. (2007): American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. Journal of Clinical Oncology, 25(33): 5287-5312. doi: 10.1200/JCO.2007.14.2364

Negrini, M., Ferracin, M., Sabbioni, S., Croce, C. M. (2007): MicroRNAs in human cancer: from research to therapy. Journal of cell science, 120(11): 1833-1840. doi:10.1242/jcs.03450

Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., Croce, C. M. (2004): Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences, 101(9): 2999-3004. doi: 10.1073/pnas.0307323101

Weber, B., Stresemann, C., Brueckner, B., Lyko, F. (2007): Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle, 6(9): 1001-1005. doi: 10.4161/cc.6.9.4209

Tyagi, A., Vishnoi, K., Mahata, S., Verma, G., Srivastava, Y., Masaldan, S., Roy, B.G., Bharti, A. C., Das, B. C. (2016): Cervical cancer stem cells selectively overexpress HPV oncoprotein E6 that controls stemness and self-renewal through upregulation of HES1. Clinical Cancer Research, 22(16), 4170-4184. doi: 10.1158/1078-0432.CCR-15-2574

Selcuklu, S. D., Donoghue, M. T., Spillane, C. (2009): miR-21 as a key regulator of oncogenic processes. Biochemical Society Transactions, 37(4): 918-925. doi: 10.1042/BST0370918

Mendell, J. T. (2008): miRiad roles for the miR-17-92 cluster in development and disease. Cell, 133(2): 217-222. doi:10.1016/j.cell.2008.04.001

Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E. G., Teruya-Feldstein, J., Bell, G. W., Weinberg, R. A. (2010): Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 28(4): 341-347.

Guessous, F., Alvarado-Velez, M., Marcinkiewicz, L., Zhang, Y., Kim, J., Heister, S., Kefas, B., Godlewski, J., Schiff, D., Purow, B., Abounader, R. (2013): Oncogenic effects of miR-10b in glioblastoma stem cells. Journal of Neuro-Oncology, 112(2): 153-163. doi: 10.1007/s11060-013-1047-0

Costinean, S., Zanesi, N., Pekarsky, Y., Tili, E., Volinia, S., Heerema, N., Croce, C. M. (2006): Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proceedings of the National Academy of Sciences, 103(18): 7024-7029. doi: 10.1073/pnas.0602266103

Eis, P. S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M. F., Lund, E., Dahlberg, J. E. (2005): Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proceedings of the National Academy of Sciences, 102(10): 3627-3632. doi: 10.1073/pnas.0500613102

Faraoni, I., Antonetti, F. R., Cardone, J., Bonmassar, E. (2009). miR-155 gene: a typical multifunctional microRNA. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1792(6): 497-505. doi: 10.1016/j.bbadis.2009.02.013

Jiang, S., Zhang, H. W., Lu, M. H., He, X. H., Li, Y., Gu, H., Liu, M., Wang, E. D. (2010): MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Research, 70(8): 3119-3127. doi: 10.1158/0008-5472.CAN-09-4250

Kim, J. H., Yeom, J. H., Ko, J. J., Han, M. S., Lee, K., Na, S. Y., Bae, J. (2011): Effective delivery of anti-miRNA DNA oligonucleotides by functionalized gold nanoparticles. Journal of Biotechnology, 155(3), 287-292. doi: 10.1016/j.jbiotec.2011.07.014

Kim, J. K., Choi, K. J., Lee, M., Jo, M. H., Kim, S. (2012): Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer-and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials, 33(1): 207-217. doi: 10.1016/j.biomaterials.2011.09.023

Matsuyama, H., Suzuki, H. I., Nishimori, H., Noguchi, M., Yao, T., Komatsu, N., Mano, H., Sugimoto, K., Miyazono, K. (2011): miR-135b mediates NPM-ALK–driven oncogenicity and renders IL-17–producing immunophenotype to anaplastic large cell lymphoma. Blood, The Journal of the American Society of Hematology, 118(26): 6881-6892. doi: 10.1182/blood-2011-05-354654

Chiu, S. C., Chung, H. Y., Cho, D. Y., Chan, T. M., Liu, M. C., Huang, H. M., Li, T.Y., Lin, J.Y., Chou, P.C., Fu, R.H., Yang, W., Harn, H., Lin, S. Z. (2014): Therapeutic potential of microRNA let-7: tumor suppression or impeding normal stemness. Cell Transplantation, 23(4-5): 459-469. doi: doi.org/10.3727/096368914X678418

O’Neill, C. P., Dwyer, R. M. (2020): Nanoparticle-based delivery of tumor suppressor microRNA for cancer therapy. Cells, 9(2): 521. doi: 10.3390/cells9020521

MacFarlane, L. A., R Murphy, P. (2010): MicroRNA: biogenesis, function and role in cancer. Current Genomics, 11(7), 537-561. doi: 10.2174/138920210793175895

Bail, S., Swerdel, M., Liu, H., Jiao, X., Goff, L. A., Hart, R. P., Kiledjian, M. (2010): Differential regulation of microRNA stability. Rna, 16(5): 1032-1039. doi:10.1261/rna.1851510

Croce, C. M. (2009): Causes and consequences of microRNA dysregulation in cancer. Nature Reviews Genetics, 10(10): 704-714. doi: 10.1038/nrg2634

Xiong, Y., Fang, J. H., Yun, J. P., Yang, J., Zhang, Y., Jia, W. H., Zhuang, S. M. (2010): Effects of microRNA‐29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology, 51(3): 836-845. doi: 10.1002/hep.23380

Rostas, J. W., Pruitt, H. C., Metge, B. J., Mitra, A., Bailey, S. K., Bae, S., Singh, K. P., Devine, D. J., Dyess, D. L., Richards, W. O., Tucker, J. A., Shevde, L. A., Samant, R. S. (2014): microRNA-29 negatively regulates EMT regulator N-myc interactor in breast cancer. Molecular Cancer, 13(1): 1-11. doi: 10.1186/1476-4598-13-200

Akao, Y., Nakagawa, Y., Naoe, T. (2006): let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biological and Pharmaceutical Bulletin, 29(5): 903-906. doi: 10.1248/bpb.29.903

Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., Taccioli, C., Zanesi, N. R., Garzon, Aqeilan, R. I., Alder, H. S., Volinia, S., Rassenti, L., Liu, X., Liu, C. G., Kipps, T. J., Negrini, M., Croce, C. M. (2008): MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences, 105(13): 5166-5171. doi: 10.1073/pnas.0800121105

Ambs, S., Prueitt, R. L., Yi, M., Hudson, R. S., Howe, T. M., Petrocca, F., Wallace, T. A., Liu, C. G., Volinia, S., Calin, G. A., Yfantis, H. G., Stephens, R. M., Croce, C. M. (2008): Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Research, 68(15): 6162-6170. doi: 10.1158/0008-5472.CAN-08-0144

Roccaro, A. M., Sacco, A., Thompson, B., Leleu, X., Azab, A. K., Azab, F., Runnels, J., Jia, X., Ngo, H. T., Melhem, M. R., Lin, C. P., Ribatti, D., Rollins, B. J., Witzig, T. E., Anderson, K. C., Ghobrial, I. M. (2009): MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood, The Journal of the American Society of Hematology, 113(26): 6669-6680. doi: 10.1182/blood-2009-01-198408

Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., Ambesi-Impiombato, A., Califano, A., Migliazza, A., Bhagat, G., Dalla-Favera, R. (2010): The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17(1): 28-40. doi: 10.1016/j.ccr.2009.11.019

Bhardwaj, A., Srivastava, S. K., Singh, S., Arora, S., Tyagi, N., Andrews, J., McClellan, S., Carter, J.E., Singh, A. P. (2014): CXCL12/CXCR4 signaling counteracts docetaxel-induced microtubule stabilization via p21-activated kinase 4-dependent activation of LIM domain kinase 1. Oncotarget, 5(22), 11490. doi: 10.18632/oncotarget.2571

Deshmukh, S. K., Srivastava, S. K., Bhardwaj, A., Singh, A. P., Tyagi, N., Marimuthu, S., Dyess, D. L., Dal, V. Z., Carter, J. E., Singh, S. (2015): Resistin and interleukin-6 exhibit racially-disparate expression in breast cancer patients, display molecular association and promote growth and aggressiveness of tumor cells through STAT3 activation. Oncotarget, 6(13): 11231. doi: 10.18632/oncotarget.3591

Zhao, J. J., Lin, J., Lwin, T., Yang, H., Guo, J., Kong, W., Dessureault, S., Moscinski, L. C., Rezania, D., Dalton, W. S., Sotomayor, E., Tao, J., Cheng, J. Q. (2010): microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood, The Journal of the American Society of Hematology, 115(13): 2630-2639. doi: 10.1182/blood-2009-09-243147

Vogt, M., Munding, J., Grüner, M., Liffers, S. T., Verdoodt, B., Hauk, J., Steinstraesser, L., Tannapfel, A., Hermeking, H. (2011). Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Archiv, 458(3), 313-322. doi: 10.1007/s00428-010-1030-5

Fabbri, M., Bottoni, A., Shimizu, M., Spizzo, R., Nicoloso, M. S., Rossi, S., Croce, C. M. (2011): Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. Jama, 305(1), 59-67. doi:10.1001/jama.2010.1919

Corney, D. C., Hwang, C. I., Matoso, A., Vogt, M., Flesken-Nikitin, A., Godwin, A. K., Kamat, A. A., Sood, A. K., Ellenson, L. H., Nikitin, A. Y. (2010): Frequent downregulation of miR-34 family in human ovarian cancers. Clinical Cancer Research, 16(4): 1119-1128. doi: 10.1158/1078-0432.CCR-09-2642

Mittal, A., Chitkara, D., Behrman, S. W., Mahato, R. I. (2014): Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials, 35(25): 7077-7087. doi: 10.1016/j.biomaterials.2014.04.053

Johnson, C. D., Esquela-Kerscher, A., Stefani, G., Byrom, M., Kelnar, K., Ovcharenko, D., Wilson, M., Wang, X., Shelton, J., Shingara, J., Chin, L., Brown, D., Slack, F. J. (2007): The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Research, 67(16): 7713-7722. doi: 10.1158/0008-5472.CAN-07-1083

Esquela-Kerscher, A., Trang, P., Wiggins, J. F., Patrawala, L., Cheng, A., Ford, L., Weidhaas, J. B., Brown, D., Bader, A. G., Slack, F. J. (2008): The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell cycle, 7(6): 759-764. doi: 10.4161/cc.7.6.5834

Trang, P., Medina, P. P., Wiggins, J. F., Ruffino, L., Kelnar, K., Omotola, M., Homer, R.,

Brown, D., Bader, A. G., Weidhass, J.B., Slack, F. J. (2010): Regression of murine lung tumors by the let-7 microRNA. Oncogene, 29(11): 1580-1587. doi: 10.1038/onc.2009.445

Bader, A. G., Brown, D., Stoudemire, J., Lammers, P. (2011): Developing therapeutic microRNAs for cancer. Gene therapy, 18(12): 1121-1126. doi: 10.1038/gt.2011.79

McCormick, F. (2001): Cancer gene therapy: fringe or cutting edge? Nature Reviews Cancer, 1(2): 130-141. doi:10.1038/35101008

Roth, J. A. (2006): Adenovirus p53 gene therapy. Expert opinion on biological therapy, 6(1): 55-61. doi: 10.1517/14712598.6.1.55

Li, T., Li, D., Sha, J., Sun, P., Huang, Y. (2009): MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochemical and biophysical research communications, 383(3): 280-285. doi: 10.1016/j.bbrc.2009.03.077

Esau, C. C. (2008): Inhibition of microRNA with antisense oligonucleotides. Methods, 44(1): 55-60. doi: 10.1016/j.ymeth.2007.11.001

Hutvágner, G., Simard, M. J., Mello, C. C., Zamore, P. D., Joyce, G. (2004): Sequence-specific inhibition of small RNA function. PLoS Biology, 2(4): e98. doi: 10.1371/journal.pbio.0020098

Karthik, L., Kumar, G., Keswani, T., Bhattacharyya, A., Chandar, S. S., Bhaskara Rao, K. V. (2014): Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PloS one, 9(3): e90972. doi: 10.1371/journal.pone.0029275

Ørom, U. A., Kauppinen, S., Lund, A. H. (2006): LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene, 372: 137-141. doi:10.1016/j.gene.2005.12.031

Kloosterman, W. P., Wienholds, E., de Bruijn, E., Kauppinen, S., Plasterk, R. H. (2006): In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nature Methods, 3(1): 27-29. doi: 10.1038/nmeth843

Choi, W. Y., Giraldez, A. J., Schier, A. F. (2007): Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science, 318(5848): 271-274. doi: 10.1126/science.1147535

Nielsen, P. E., Egholm, M., Berg, R. H., Buchardt, O. (1991): Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 254(5037): 1497-1500. doi: 10.1126/science.1962210

Egawa, S., Toma, H., Ohigashi, H., Okusaka, T., Nakao, A., Hatori, T., Hiroyuki, M., Akio, Y., Tanaka, M. (2012): Japan pancreatic cancer registry; 30th year anniversary: Japan pancreas society. Pancreas, 41(7): 985-992. doi: 10.1097/MPA.0b013e3181ba82e1

Basu, A., Alder, H., Khiyami, A., Leahy, P., Croce, C. M., Haldar, S. (2011): MicroRNA-375 and microRNA-221: potential noncoding RNAs associated with antiproliferative activity of benzyl isothiocyanate in pancreatic cancer. Genes & Cancer, 2(2): 108-119. doi: 10.1177/1947601911409212

Srivastava, S. K., Bhardwaj, A., Singh, S., Arora, S., Wang, B., Grizzle, W. E., Singh, A. P. (2011): MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis, 32(12): 1832-1839. doi: 10.1093/carcin/bgr223

Terasawa, K., Shimizu, K., Tsujimoto, G. (2011): Synthetic pre-miRNA-based shRNA as potent RNAi triggers. Journal of nucleic acids, 2011. doi: 10.4061/2011/131579

Pereira, D. M., Rodrigues, P. M., Borralho, P. M., Rodrigues, C. M. (2013): Delivering the promise of miRNA cancer therapeutics. Drug Discovery Today, 18(5-6): 282-289. doi: 10.1016/j.drudis.2012.10.002

Chen, Y., Zhu, X., Zhang, X., Liu, B., Huang, L. (2010): Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Molecular Therapy, 18(9): 1650-1656. doi: 10.1038/mt.2010.136

Mallick, S., Choi, J. S. (2014): Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery. Journal of Nanoscience and Nanotechnology, 14(1): 755-765. doi: 10.1166/jnn.2014.9080

Tyagi, N., Ghosh, P. C. (2011): Folate receptor mediated targeted delivery of ricin entrapped into sterically stabilized liposomes to human epidermoid carcinoma (KB) cells: effect of monensin intercalated into folate-tagged liposomes. European Journal of Pharmaceutical Sciences, 43(4): 343-353. doi: 10.1016/j.ejps.2011.05.010

Anderson, D. M., Hall, L. L., Ayyalapu, A. R., Irion, V. R., Nantz, M. H., Hecker, J. G. (2003): Stability of mRNA/cationic lipid lipoplexes in human and rat cerebrospinal fluid: methods and evidence for nonviral mRNA gene delivery to the central nervous system. Human Gene Therapy, 14(3): 191-202. doi: 10.1089/10430340360535751

Wu, Y., Crawford, M., Yu, B., Mao, Y., Nana-Sinkam, S. P., Lee, L. J. (2011): MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Molecular Pharmaceutics, 8(4): 1381-1389. doi: 10.1021/mp2002076

Tucak, A., Sirbubalo, M., Hadžiabdić, J., Rahić, O., Ruseska, I., Zimmer, A., Vranić, E. (2020): Nanostructured lipid carriers as drug delivery systems for miRNA. Macedonian Pharmaceutical Bulletin, 66 (Suppl 1): 235 – 236. doi: 10.33320/maced.pharm.bull.2020.66.03.117

Wang, X., Yu, B., Ren, W., Mo, X., Zhou, C., He, H., Lee, L. J. (2013): Enhanced hepatic delivery of siRNA and microRNA using oleic acid based lipid nanoparticle formulations. Journal of Controlled Release, 172(3): 690-698. doi: 10.1016/j.jconrel.2013.09.027

Rai, K., Takigawa, N., Ito, S., Kashihara, H., Ichihara, E., Yasuda, T., Shimizu, K., Tanimoto, M., Kiura, K. (2011): Liposomal delivery of microRNA-7–expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer cells. Molecular Cancer Therapeutics, 10(9): 1720-1727. doi: 10.1158/1535-7163.MCT-11-0220

Wang, S., Cao, M., Deng, X., Xiao, X., Yin, Z., Hu, Q., Zeng, Y. (2015): Degradable Hyaluronic Acid/Protamine Sulfate Interpolyelectrolyte Complexes as miRNA‐Delivery Nanocapsules for Triple‐Negative Breast Cancer Therapy. Advanced Healthcare Materials, 4(2): 281-290. doi: 10.1002/adhm.201400222

Piao, L., Zhang, M., Datta, J., Xie, X., Su, T., Li, H., Teknos, T. N., Pan, Q. (2012): Lipid-based nanoparticle delivery of Pre-miR-107 inhibits the tumorigenicity of head and neck squamous cell carcinoma. Molecular Therapy, 20(6): 1261-1269. doi: 10.1038/mt.2012.67

Shi, S. J., Zhong, Z. R., Liu, J., Zhang, Z. R., Sun, X., Gong, T. (2012): Solid lipid nanoparticles loaded with anti-microRNA oligonucleotides (AMOs) for suppression of microRNA-21 functions in human lung cancer cells. Pharmaceutical Research, 29(1): 97-109. doi: 10.1007/s11095-011-0514-6

Takahashi, M., Yamada, N., Hatakeyama, H., Murata, M., Sato, Y., Minakawa, N., Harashima, H., Matsuda, A. (2013): In vitro optimization of 2′-OMe-4′-thioribonucleoside–modified anti-microRNA oligonucleotides and its targeting delivery to mouse liver using a liposomal nanoparticle. Nucleic Acids Research, 41(22): 10659-10667. doi.org/10.1093/nar/gkt823

Spector, P. E., Fox, S., Penney, L. M., Bruursema, K., Goh, A., Kessler, S. (2006): The dimensionality of counterproductivity: Are all counterproductive behaviors created equal?. Journal of Vocational Behavior, 68(3): 446-460. doi: 10.1016/j.jconrel.2014.09.005

Wiggins, J. F., Ruffino, L., Kelnar, K., Omotola, M., Patrawala, L., Brown, D., Bader, A. G. (2010): Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Research, 70(14): 5923-5930. doi: 10.1158/0008-5472.CAN-10-0655

Trang, P., Wiggins, J. F., Daige, C. L., Cho, C., Omotola, M., Brown, D., Weidhaas, J. B., Bader, A. G., Slack, F. J. (2011): Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Molecular Therapy, 19(6), 1116-1122. doi: 10.1038/mt.2011.48

Tyagi, N., Rathore, S. S., Ghosh, P. C. (2011): Enhanced killing of human epidermoid carcinoma (KB) cells by treatment with ricin encapsulated into sterically stabilized liposomes in combination with monensin. Drug Delivery, 18(6): 394-404. doi: 10.3109/10717544.2011.567309

Miller, C. R., Bondurant, B., McLean, S. D., McGovern, K. A., O'Brien, D. F. (1998): Liposome− cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry, 37(37): 12875-12883. doi: 10.1021/bi980096y

Pramanik, D., Campbell, N. R., Karikari, C., Chivukula, R., Kent, O. A., Mendell, J. T., Maitra, A. (2011): Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Molecular Cancer Therapeutics, 10(8): 1470-1480. doi: 10.1158/1535-7163.MCT-11-0152

Liu, C., Kelnar, K., Liu, B., Chen, X., Calhoun-Davis, T., Li, H., Patrawala, L., Yan, H., Jeter, C., Honorio, S., Wiggins, J. F., Bader, A. G., Fagin, R., Brown, D., Tang, D. G. (2011): The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Medicine, 17(2): 211-215. doi:10.1038/nm.2284

Pore, S. K., Choudhary, A., Rathore, B., Ganguly, A., Sujitha, P., Kumar, C. G., Agawane, S. B., Kumar, J. M., Scaria, V., Pillai, B., Banerjee, R. (2013): Hsp90-targeted miRNA-liposomal formulation for systemic antitumor effect. Biomaterials, 34(28): 6804-6817. doi: 10.1016/j.biomaterials.2013.05.054

Lee, H. Y., Mohammed, K. A., Kaye, F., Sharma, P., Moudgil, B. M., Clapp, W. L., Nasreen, N. (2013): Targeted delivery of let-7a microRNA encapsulated ephrin-A1 conjugated liposomal nanoparticles inhibit tumor growth in lung cancer. International Journal of Nanomedicine, 8: 4481. doi: 10.2147/IJN.S41782

Zhang, M., Zhou, X., Wang, B., Yung, B. C., Lee, L. J., Ghoshal, K., Lee, R. J. (2013): Lactosylated gramicidin-based lipid nanoparticles (Lac-GLN) for targeted delivery of anti-miR-155 to hepatocellular carcinoma. Journal of Controlled Release, 168(3): 251-261. doi: 10.1016/j.jconrel.2013.03.020

Costa, P. M., Cardoso, A. L., Mendonça, L. S., Serani, A., Custódia, C., Conceição, M., Simoes, S., Moreira, J. N., Pereira de, A. L., De Lima, M. C. P. (2013): Tumor-targeted chlorotoxin-coupled nanoparticles for nucleic acid delivery to glioblastoma cells: a promising system for glioblastoma treatment. Molecular Therapy-Nucleic Acids, 2, e100. doi: 10.1038/mtna.2013.30

Ando, H., Okamoto, A., Yokota, M., Shimizu, K., Asai, T., Dewa, T., Oku, N. (2013): Development of a miR‐92a delivery system for anti‐angiogenesis‐based cancer therapy. The Journal of Gene Medicine, 15(1): 20-27. doi: 10.1002/jgm.2690

Bader, A. G. (2012): miR-34–a microRNA replacement therapy is headed to the clinic. Frontiers in Genetics, 3: 120. doi: 10.3389/fgene.2012.00120

Boussif, O., Lezoualc'h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., Behr, J. P. (1995): A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences, 92(16): 7297-7301. doi: 10.1073/pnas.92.16.7297

Biray Avcı, Ç., Özcan, İ., Balcı, T., Özer, Ö., Gündüz, C. (2013): Design of polyethylene glycol–polyethylenimine nanocomplexes as non‐viral carriers: mir‐150 delivery to chronic myeloid leukemia cells. Cell Biology International, 37(11): 1205-1214. doi: 10.1002/cbin.10157

Ibrahim, A. F., Weirauch, U., Thomas, M., Grünweller, A., Hartmann, R. K., Aigner, A. (2011): MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Research, 71(15): 5214-5224. doi: 10.1158/0008-5472.CAN-10-4645

Son, S., Jang, J., Youn, H., Lee, S., Lee, D., Lee, Y. S., Jeong, J.M., Kim, W. J., Lee, D. S. (2011): A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials, 32(21): 4968-4975. doi: 10.1016/j.biomaterials.2011.03.047

Yang, Y. P., Chien, Y., Chiou, G. Y., Cherng, J. Y., Wang, M. L., Lo, W. L., Chang, P. I., Huang, Y. W., Chen, Y. H., Shih, M. T., Chen, Y., Chiou, S. H. (2012): Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials, 33(5): 1462-1476. doi: 10.1016/j.biomaterials.2011.10.071

Liang, G. F., Zhu, Y. L., Sun, B., Hu, F. H., Tian, T., Li, S. C., Xiao, Z. D. (2011): PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells. Nanoscale Research Letters, 6(1): 1-9. doi:10.1186/1556-276X-6-447

Babar, I. A., Cheng, C. J., Booth, C. J., Liang, X., Weidhaas, J. B., Saltzman, W. M., Slack, F. J. (2012): Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proceedings of the National Academy of Sciences, 109(26): E1695-E1704. doi: 10.1073/pnas.1201516109

Liu, Q., Li, R. T., Qian, H. Q., Wei, J., Xie, L., Shen, J., Yang, M., Qian, X. P., Yu, L. X., Jiang, X.Q. Liu, B. R. (2013): Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials, 34(29): 7191-7203. doi: 10.1016/j.biomaterials.2013.06.004

Ren, Y., Kang, C. S., Yuan, X. B., Zhou, X., Xu, P., Han, L., Wang, G. X., Jia, Z., Zhong, Y., Yu, S., Sheng, J., Pu, P. Y. (2010): Co-delivery of as-miR-21 and 5-FU by poly (amidoamine) dendrimer attenuates human glioma cell growth in vitro. Journal of Biomaterials Science, Polymer Edition, 21(3): 303-314. doi: 10.1163/156856209X415828

Ren, Y., Zhou, X., Mei, M., Yuan, X. B., Han, L., Wang, G. X., Jia, Z. F., Xu, P., Pu, P.Y., Kang, C. S. (2010): MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. BMC Cancer, 10(1): 1-13. doi:10.1186/1471-2407-10-27

Gray, W. D., Wu, R. J., Yin, X., Zhou, J., Davis, M. E., Luo, Y. (2013): Dendrimeric bowties featuring hemispheric-selective decoration of ligands for microRNA-based therapy. Biomacromolecules, 14(1): 101-109. doi: 10.1021/bm301393z

Takeshita, F., Patrawala, L., Osaki, M., Takahashi, R. U., Yamamoto, Y., Kosaka, N., Kawamata, M., Kelnar, K., Bader, A. G., Brown, D., Ochiya, T. (2010): Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Molecular Therapy, 18(1): 181-187. doi: 10.1038/mt.2009.207

Osaki, M., Takeshita, F., Sugimoto, Y., Kosaka, N., Yamamoto, Y., Yoshioka, Y., Kobayashi, E., Yamada, T., Kawai, A., Inoue, T., Ito, H., Oshimura, M., Ochiya, T. (2011): MicroRNA-143 regulates human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Molecular Therapy, 19(6): 1123-1130. doi: 10.1038/mt.2011.53

Takei, Y., Takigahira, M., Mihara, K., Tarumi, Y., Yanagihara, K. (2011): The metastasis-associated microRNA miR-516a-3p is a novel therapeutic target for inhibiting peritoneal dissemination of human scirrhous gastric cancer. Cancer Research, 71(4): 1442-1453. doi: 10.1158/0008-5472.CAN-10-2530

Hao, Z., Fan, W., Hao, J., Wu, X., Zeng, G. Q., Zhang, L. J., Nie, S. F., Wang, X. D. (2016): Efficient delivery of micro RNA to bone-metastatic prostate tumors by using aptamer-conjugated atelocollagen in vitro and in vivo. Drug Delivery, 23(3): 864-871. doi: 10.3109/10717544.2014.920059

Cao, M., Deng, X., Su, S., Zhang, F., Xiao, X., Hu, Q., Fu, Y., Yang, B. B., Wu, Y., Sheng, W., Zeng, Y. (2013): Protamine sulfate–nanodiamond hybrid nanoparticles as a vector for MiR-203 restoration in esophageal carcinoma cells. Nanoscale, 5(24): 12120-12125. doi: 10.1039/c3nr04056a

Deng, X., Cao, M., Zhang, J., Hu, K., Yin, Z., Zhou, Z., Xiao, X., Yang, Y., Sheng, W., Wu, Y., Zeng, Y. (2014): Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials, 35(14): 4333-4344. doi: 10.1016/j.biomaterials.2014.02.006

Dominici, M. L. B. K., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R.J., Keating, A., Prockop, D.J., Horwitz, E. M. (2006): Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4): 315-317. doi: 10.1080/14653240600855905

Chamberlain, G., Fox, J., Ashton, B., Middleton, J. (2007): Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem cells, 25(11): 2739-2749. doi: 10.1634/stemcells.2007-0197

Baek, G., Choi, H., Kim, Y., Lee, H. C., Choi, C. (2019): Mesenchymal stem cell-derived extracellular vesicles as therapeutics and as a drug delivery platform. Stem Cells Translational Medicine, 8(9): 880-886. doi: 10.1002/sctm.18-0226

Gilligan, K. E., Dwyer, R. M. (2020): Extracellular vesicles for cancer therapy: Impact of host immune response. Cells, 9(1): 224. doi: 10.3390/cells9010224

Li, Y., Wang, Y., Yu, L., Sun, C., Cheng, D., Yu, S., Wang, Q., Yan, Y., Kang, C., Jin, S., Kong, Y. (2013): miR-146b-5p inhibits glioma migration and invasion by targeting MMP16. Cancer letters, 339(2): 260-269. doi: 10.1016/j.canlet.2013.06.018

Liu, J., Xu, J., Li, H., Sun, C., Yu, L., Li, Y., Shi, C., Zhou, X., Bian, X., Ping, Y., Yu, S. (2015). miR-146b-5p functions as a tumor suppressor by targeting TRAF6 and predicts the prognosis of human gliomas. Oncotarget, 6(30), 29129. doi: 10.18632/oncotarget.4895

Katakowski, M., Buller, B., Zheng, X., Lu, Y., Rogers, T., Osobamiro, O., Shu, W., Jiang, F., Chopp, M. (2013): Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Letters, 335(1): 201-204. doi: 10.1016/j.canlet.2013.02.019

Matsumoto, J., Stewart, T., Banks, W. A., Zhang, J. (2017): The transport mechanism of extracellular vesicles at the blood-brain barrier. Current pharmaceutical design, 23(40): 6206-6214. doi: 10.2174/1381612823666170913164738

Wang, L., Yin, P., Wang, J., Wang, Y., Sun, Z., Zhou, Y., Guan, X. (2019): Delivery of mesenchymal stem cells-derived extracellular vesicles with enriched miR-185 inhibits progression of OPMD. Artificial Cells, Nanomedicine, and Biotechnology, 47(1): 2481-2491. doi: 10.1080/21691401.2019.1623232

Arora, S., Swaminathan, S. K., Kirtane, A., Srivastava, S. K., Bhardwaj, A., Singh, S., Panyam, J., Singh, A. P. (2014): Synthesis, characterization, and evaluation of poly (D, L-lactide-co-glycolide)-based nanoformulation of miRNA-150: potential implications for pancreatic cancer therapy. International Journal of Nanomedicine, 9: 2933. doi: 10.2147/IJN.S61949

Bhattacharyya, S., Kudgus, R. A., Bhattacharya, R., Mukherjee, P. (2011): Inorganic nanoparticles in cancer therapy. Pharmaceutical Research, 28(2), 237-259. doi: 10.1007/s11095-010-0318-0

Hao, L., Patel, P. C., Alhasan, A. H., Giljohann, D. A., Mirkin, C. A. (2011): Nucleic acid–gold nanoparticle conjugates as mimics of microRNA. Small, 7(22): 3158-3162. doi: 10.1002/smll.201101018

Halib, N., Ahmad, I., Grassi, M., Grassi, G. (2019): The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications. International journal of pharmaceutics, 566: 631-640. doi: 10.1016/j.ijpharm.2019.06.020

Comella, P., Casaretti, R., Sandomenico, C., Avallone, A., Franco, L. (2009): Role of oxaliplatin in the treatment of colorectal cancer. Therapeutics and Clinical Risk Management, 5: 229. doi: 10.2147/tcrm.s3583

Crew, E., Rahman, S., Razzak-Jaffar, A., Mott, D., Kamundi, M., Yu, G., Tchah, N., Lee, J., Bellavia, M., Zhong, C. J. (2012). MicroRNA conjugated gold nanoparticles and cell transfection. Analytical Chemistry, 84(1), 26-29. doi: 10.1021/ac202749p

Ghosh, R., Singh, L. C., Shohet, J. M., Gunaratne, P. H. (2013): A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials, 34(3): 807-816. doi: 10.1016/j.biomaterials.2012.10.023

Alrfaei, B. M., Clark, P., Vemuganti, R., Kuo, J. S. (2020): MicroRNA miR-100 decreases glioblastoma growth by targeting SMARCA5 and ErbB3 in tumor-initiating cells. Technology in Cancer Research & Treatment, 19, 1533033820960748. doi: 10.1177/1533033820960748

Masoudi, M. S., Mehrabian, E., Mirzaei, H. (2018). MiR‐21: A key player in glioblastoma pathogenesis. Journal of Cellular Biochemistry, 119(2), 1285-1290. doi: 10.1002/jcb.26300

Théry, C., Zitvogel, L., Amigorena, S. (2002). Exosomes: Composition, biogenesis and function. Nature Reviews Immunology, 2, 569–579. doi:10.1038/nri855

Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., et al. (2018): Minimal information for studies of extracellular vesicles 2018 (misev2018): A position statement of the international society for extracellular vesicles and update of the misev2014 guidelines. Journal of Extracellular Vesicles, 7, 1535750. doi.org/10.1080/20013078.2018.1535750.

Downloads

Published

2022-06-17

How to Cite

Dağlıoğlu, Y., & Öztürk, B. (2022). NANOTEKNOLOJİ İLE KARSİNOGENEZ SÜRECİNDE miRNA’LARIN ROLÜ VE PROFİLLENMESİ. Türk Bilimsel Derlemeler Dergisi, 15(1), 86–114. Retrieved from https://derleme.gen.tr/index.php/derleme/article/view/412

Issue

Section

Articles