CD33 and Alzheimer’s Disease
Abstract views: 26 / PDF downloads: 19Keywords:
Alzheimer’s disease, CD33, sialic acid, amyloidAbstract
Alzheimer’s disease (AD), which is mainly characterized by impaired memory, is a rapidly growing clinical and public health issue due to the aging population. The neuropathological hallmarks of the disease include accumulation of senile plaques, composed of amyloid-beta, and neurofibrillary tangles. The amyloid-beta peptide (Aβ) cascade hypothesis suggests Aβ accumulation is the fundamental initiator and major pathogenic event for AD. Recent genome-wide association studies have illuminated cluster of differentiation 33 (CD33) is a new genetic risk factor for AD. CD33 as a type 1 transmembrane protein is mediating the cell–cell interaction. In the brain, CD33 is mainly expressed on microglial cells. In AD brain, the CD33 level is found to be positively correlated with amyloid plaque burden and disease severity.
References
Barbagallo, M., Marotta F., Dominguez L.J. 2015. Oxidative stress in patients with Alzheimer’s disease: effect of extracts of fermented papaya powder. Mediators of inflammation, Article ID 624801, volume 2015, http://dx.doi.org/10.1155/2015/624801.
Efthymiou, A.G., Goate A.M. 2017. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk, Molecular Neurodegeneration, 12:43.
Gatz, M., Reynolds C.A., Fratiglioni L., Johansson B., Mortimer J.A., Berg S., Fiske A., Pedersen N.L. 2006. Role of genes and environments for explaining Alzheimer disease. Archives of General Psychiatry, 63(2), 168-174.
Griciuc, A., Serrano-Pozo A., Parrado A.R., Lesinski A.N., Asselin C.N., Mullin K., Hooli B., Choi S.H., Hyman B.T., Tanzi R.E. 2013. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron, 78(4): 631-643.
Hollingworth, P., Harold D., Sims R., Gerrish A., Lambert J.C., Carrasquillo M.M., Abraham R., Hamshere M.L., Pahwa J.S., Moskvina V. et.al. 2011. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nature genetics, 43(5), 429-435.
Hu, N., Tan M.S., Sun L., Jiang T., Wang Y.L., Tan L., Zhang W., Yu J.T., Tan L. 2014. Decreased expression of CD33 in peripheral mononuclear cells of Alzheimer’s disease patients. Neuroscience letters, 563:51-54.
Human Gene Database, Gene Cards, CD33 gene, https://www.genecards.org/cgi-bin/carddisp.pl?gene=CD33
Imtiaz, B., Tolppanen A.M., Kivipelto M., Soininen H. 2014. Future directions in Alzheimer’s disease from risk factors to prevention. Biochemical Pharmacology, 88(4):661-670.
Jiang, T., Yu J.T., Hu N., Tan M.S., Zhu X.C., Tan L. 2014. CD33 in Alzheimer’s Disease. Molecular Neurobiology, 49:529-535.
Jiang, Y.T., Li H.Y., Cao X.P., Tan L. 2018. Metaanalysis of the association between CD33 and Alzheimer’s disease, Annals of translational medicine, 6(10).
Karch, C.M., Jeng A.T., Nowotny P., Cady J., Cruchaga C., Goate A.M. 2012. Expression of Novel Alzheimer’s Disease Risk Genes in Control and Alzheimer’s Disease Brains, PLoS One, 7(11).
Laing, A.A., Harrison C.J., Gibson B.E.S., Keeshan K. 2017. Unlocking the potential of anti-CD33 therapy in adult and childhood acutemyeloid leukemia, Experimental Hematology, Volume 54:40-50.
Li, X., Shen N., Zhan S., Liu J., Jiang Q., Liao M., Feng R., Zhang L., Wang G., Ma G., Zhou H., Chen Z., Jiang Y., Zhao B., Li K., Liu G. 2015. CD33 rs3865444 polymorphism contributes to Alzheimer’s disease susceptibility in Chinese, European, and North American populations. Molecular neurobiology, 52(1), 414-421.
Licht, E.A., Mcmurtray A.M., Saul R.E., Mendez M.F. 2007. Cognitive Differences between Early and Late-Onset Alzheimer’s Disease. American Journal of Alzheimer’s Disease & Other Dementias, 22(3):218-222.
Mao, Y.F., Guo Z.Y., Pu J.L., Chen Y.X., Zhang B.R. 2015. Association of CD33 and MS4A cluster variants with Alzheimer’s disease in East Asian populations, Neuroscience letters, 609:235–239
Mayeux, R., Stern Y. 2012. Epidemiology of Alzheimer Disease. Cold Spring Harbor perspectives in medicine, 2(8): 1-18.
Mirandei, J.V.H., Audrain M., Fanutza T., Kim S.H., Klein W.L., Glabe C., Readhead B., Dudley J.T., Blitzer R.D., Wang M., Zhang B., Schadt E.E., Gandy S., Ehrlich M.E. 2017. Defciency of TYROBP, an adapter protein for TREM2 and CR3 receptors, is neuroprotective in a Mouse model of early Alzheimer’s pathology, Acta Neuropathol 134:769–788.
Misra, A., Chakrabarti S.S., Gambhir I.S. 2018. New genetic players in late-onset Alzheimer’s disease: Findings of genome-wide association studies, Indian J Med Res 148, 135-144.
Panegyres, P.K., Chen H.Y. 2013. Differences between early and late onset Alzheimer’s disease, American journal of neurodegenerative disease, 2(4):300-306.
Reitz, C., Mayeux R. 2014. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochemical Pharmacology, 88: 640–651.
Rosenberg, R.N., Lambracht-Washington D., Yu G., Xia W. 2016. Genomics of Alzheimer disease: a review. JAMA neurology, 73(7), 867-874.
Selekler, K. 2010. Alois Alzheimer ve Alzheimer hastalığı. Türk Geriatri Dergisi, 13(3): 9-14.
Wang, M.M., Miao D., Cao X.P., Tan L., Tan L. 2018. Innate immune activation in Alzheimer’s disease, Annals of translational medicine, 6(10):177.
Wes, P.D., Sayed F.A., Bard F., Gan L. 2016. Targeting microglia for the treatment of Alzheimer’s Disease. Glia, 64(10), 1710-1732.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Türk Bilimsel Derlemeler Dergisi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.