Abstract views: 192 / PDF downloads: 131


  • Selin GALATALI Mugla Sitki Kocman University


CAMTA, CBF/DREB TFs, cold stress, Hsp Family, MYB TF


Plants do not have the ability to migrate to another suitable environment like other living things, for this reason, they should adapt to the different environmental conditions or their reproduction, the development and the growth are negatively affected. All these negative situations that affect plants negatively are called stress that are divided into two groups biotic and abiotic. The cold stress has two main effects on the plant: low temperature and dehydration. Plants create a tolerance response to this stress by laying out the transcriptional levels of proteins with different functions and especially transcription factors and some genes. Molecules involved directly or indirectly here include cryoprotectant proteins, chaperones, transcription factors and kinases. In the current review article, it was aimed to examine the cellular responses of medicinal plants treated with the cold stress during the adaptation process at the molecular level.


Faydaoglu, E., Surucuoglu, M.S. (2011): The use and economic importance of medicinal and aromatic plants from past to present. Kastamonu University Journal of Forestry Faculty 11 (1): 52-67.

Acibuca, V., Budak, D.B. (2018): The place and importance of medicinal and aromatic plants in the world and in Turkey. Çukurova Journal of Agricultural and Food Sciences 33 (1): 37-44.

WHO (1993):;jsessionid=8081FBAC05BB1C37AFCAA9377A69CA41?sequence=1

Ozudogru, E.A., Kaya E, Kirdok, E., Issever-Ozturk, S. (2011a): In vitro propagation from young and mature explants of thyme (Thymus vulgaris and T. longicaulis) resulting in genetically stable shoots. In Vitro Cellular & Developmental Biology – Plant 47(2): 309-320.

Ozudogru, E.A., Kaya, E., Kirdok, E. (2011b): Development of protocols for short-, medium- and long-term conservation of thyme. Acta Horticulturae 918: 43-50.

Mahajan, M., Kuiry, R., Pal, P.K. (2020): Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Journal of Applied Research on Medicinal and Aromatic Plants 18: 100255.

Munda, S., Dutta, S., Pandey, S.K., Sarma, N., Lal, M. (2019): Antimicrobial activity of essential oils of medicinal and aromatic plants of the North East India: A biodiversity hot spot. Journal of Essential Oil-Bearing Plants 22 (1): 105-119.

Kaya, E., Balci, M.A., Akguller, O., Galatali, S., Yeniocak, S., Mercan, T., Guldag, S., Ozkaya, D.E., Ozturk, B., Celik, O., Aktay, I. (2021): Development of an optimum proliferation medium via the graph kernel statistical analysis method for genetically stable in vitro propagation of endemic Thymus cilicicus (Turkey). Acta Botanica Croatica 80(2): 199-207.

Kaya, E., Alves, A., Rodrigues, L., Jenderek, M., Hernandes-Ellis, M., Ozudogru, E.A., Ellis, D. (2013): Cryopreservation of Eucalyptus Genetic Resources. Cryoletters 34(6): 608-618.

Yang, L., Wen, K.S., Ruan, X., Zhao, Y.X., Wei, F., Wang Q. (2018): Response of plant secondary metabolites to environmental factors. Molecules 23 (4): 762.

Kivrak, S., Gokturk, T., Kivrak, I., Kaya, E., Karababa, E. (2019): Investigation of phenolic profiles and antioxidant activities of some Salvia species commonly grown in Southwest Anatolia using UPLC-ESI-MS/MS. Food Science and Technology 32(2): 423-431.

Bennett, R.N., Wallsgrove, R.M. (1994): Secondary metabolites in plant defence mechanisms. New Phytologist 127 (4): 617-633.

Wink, M. (2008): Evolution of secondary plant metabolism. eLS.

Wink, M. (2003): Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective, Phytochemistry 64 (1): 3-19.

Zhao, J., Davis, L.C., Verpoorte, R. (2005): Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances 23 (4): 283-333.

Tiwari, R., Rana, C. (2015): Plant secondary metabolites: a review. International Journal of Engineering 3 (5): 661-670.

Buyuk, I., Soydam Aydin, S., Sumer, A. (2012): Molecular responses of plants to stress conditions. Turkish Journal of Hygiene and Experimental Biology 69 (2): 97-110.

Ozudogru, E.A., Kaya, E. (2012): Cryopreservation of Thymus cariensis and T. vulgaris shoot tips comparison of there vitrification based methods. Cryoletters 33(5): 363-375.

Lichtenthaler, H.K. (1996): Vegetation stress: an introduction to the stress concept in plants. Journal of Plant Physiology 148 (1-2): 4-14.

Simms, E.L. (2000): Defining tolerance as a norm of reaction. Evolutionary Ecology 14 (4): 563-570.

Donmez, C. (2018): Determination of mRNA expression levels of bZIP, MYB, NAC, NF-YB and WRKY type transcription factor genes in sunflower (Helianthus annuus L.) plant grown under cold stress, Integrated PhD Thesis, Ankara University, Ankara, Turkey, 252s.

O'Kane, D., Gill, V., Boyd, P., Burdon, R. (1996): Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus. Planta 198 (3): 371-377.

Yang, M.T., Chen, S.L., Lin, C.Y., Chen, Y.M. (2005): Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings. Planta 221 (3): 374-385.

Shi, Y., Yang, S. (2014): ABA regulation of the cold stress response in plants. Abscisic acid: metabolism, transport and signaling. Springer. Dordrecht, pp. 337-363.

Beck, E.H., Heim, R., Hansen, J. (2004): Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. Journal of Biosciences 29 (4): 449-459.

Lindlöf, A., Chawade, A., Sikora, P., Olsson, O. (2015): Comparative transcriptomics of Sijung and Jumli Marshi rice during early chilling stress imply multiple protective mechanisms. PLOS ONE 10 (5): e0125385.

Steponkus, P.L. (1984): Role of the plasma membrane in freezing injury and cold acclimation. Annual Review of Plant Physiology 35 (1): 543-584.

Steponkus, P. (1993): A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. Advances in Low-Temperature Biology 3: 211-312.

Ozkaya, D.E., Celik, O., Galatali, S., Kaya, E. (2021): Investigation of Cold Stress Effects on Plants at Molecular Level. SunText Review of BioTechnology 2(2): 1-7.

Hirt, H., Shinozaki, K. (2003): Plant responses to abiotic stress. SSBM.

Thomashow, M.F. (1999): Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology 50 (1): 571-599.

Yamada, T., Kuroda, K., Jitsuyama, Y., Takezawa, D., Arakawa, K., Fujikawa, S. (2002): Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing. Planta 215 (5): 770-778.

Yan, Y., Wei, C. L., Zhang, W. R., Cheng, H. P., Liu, J. (2006): Cross‐talk between calcium and reactive oxygen species signaling. Acta Pharmacologica Sinica 27(7): 821-826.

Ruelland, E., Vaultier, M.N., Zachowski, A., Hurry, V. (2009): Chapter 2 cold Signalling and cold acclimation in plants. Advances in Botanical Research 49: 35-150.

Ruelland, E., Zachowski, A. (2010): How plants sense temperature. Environmental and Experimental Botany 69(3): 225-232.

Chinnusamy, V., Zhu, J.K., Sunkar, R. (2010): Gene regulation during cold stress acclimation in plants. In: Sunkar, R. (ed.) Plant Stress Tolerance. Stillwater, ABD, pp. 39-55.

Mehrotra, S., Verma, S., Kumar, S., Kumari, S., Mishra, B.N. (2020): Transcriptional regulation and signalling of cold stress response in plants: an overview of current understanding. Environmental and Experimental Botany 104243.

Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K. (1998): Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell 10 (8): 1391-1406.

Zhou, M.L., Ma, J.T., Pang, J.F, Zhang, Z.L., Tang, Y.X., Wu, Y.M. (2010): Regulation of plant stress response by dehydration responsive element binding (DREB) transcription factors. African Journal of Biotechnology 9 (54): 9255-9269.

Chew, Y.H., Halliday, K.J. (2011): A stress-free walk from Arabidopsis to crops. Current Opinion Journals 22 (2): 281-286.

Rihan, H.Z., Al-Issawi, M., Fuller, M.P. (2017): Advances in physiological and molecular aspects of plant cold tolerance. Journal of Plant Interactions 12 (1): 143-157.

Vazquez-Hernandez, Romero, M., I., Escribano, M.I., Merodio, C., Sanchez-Ballesta, M.T. (2017): Deciphering the role of CBF/DREB transcription factors and dehydrins in maintaining the quality of table grapes cv. autumn royal treated with high CO2 levels and stored at 0 C. Frontiers in Plant Science 8: 1591.

Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi. M., Seki, M., Yamaguchi-Shinozaki K. (2006): Functional analysis of rice DREB1/CBF type transcription factors involved in cold responsive gene expression in transgenic rice. Plant and Cell Physiology 47 (1): 141-153.

Dong, C.H., Agarwal, M., Zhang, Y., Xie, Q., Zhu, J.K. (2006): The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proceedings of the National Academy of Sciences of the United 103 (21): 8281-8286.

Doherty, C.J., Buskirk, H.A.V., Myers, S.J., Thomashow, M.F. (2009): Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. The Plant Cell 21 (3): 972-984.

Lipsick, J.S. (1996): One billion years of MYB. Oncogene 13 (2): 223-235.

Xing, C., Liu, Y., Zhao, L., Zhang, S., Huang, X. (2019): A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance. Plant, Cell & Environment 42(3): 832-845.

Dai, X., Xu, Y., Ma, Q., Xu, W., Wang, T., Xue, Y., Chong, K. (2007): Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiology 143 (4): 1739-1751.

Ma, Q., Dai, X, Xu, Y., Guo, J., Liu, Y., Chen, N., Zhang, X. (2009): Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiology 150 (1): 244-256.

Agarwal, M., Hao, Y., Kapoor, A., Dong, C.H., Fujii, H., Zheng, X., Zhu, J.K. (2006): A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. International Journal of Biological Chemistry 281: 37636–37645.

Su, L.T., Li, J.V., Liu, D.Q., Zhai, Y., Zhang, H.J., Li. X.W., Zhang., Q.L., Wang, Y., Wang, Q.Y. (2014): A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana. Gene 538 (1): 46-55.

Lv, Y., Yang, M., Hu, D., Yang, Z., Ma, S., Li, X., Xiong, L. (2017): The OsMYB30 transcription factor suppresses cold tolerance by interacting with a JAZ protein and suppressing β-amylase expression. Plant Physiology 173 (2): 1475-1491.

Khan, S.A., Li, M.Z., Wang, S.M., Yin, H.J. (2018): Revisiting the role of plant transcription factors in the battle against abiotic stress. International Journal of Molecular Sciences 19 (6): 1634.

Krishna, P., Sacco, M., Cherutti, J.F., Hill, S. (1995): Cold induced accumulation of Hsp90 transcripts in Brassica napus. Plant Physiology 107 (3): 915-923.

Cheng, Y. Bai, S., Zhang, L.P., Chen, L., Fan, G., Xu, J.G., Guo, Z.F. (2021): Identification and characterization of AnICE1 and AnCBFs involved in cold tolerance from Ammopiptanthus nanus. Plant Physiology and Biochemistry 168: 70-82.

Liu, J., Magwanga, R., Xu, Y., Wei, T., Zheng, J., Hou, Y., Liu, F. (2021): Functional characterization of cotton c-repeat binding factor genes reveal their potential role in cold stress tolerance. Frontiers in Plant Science 12, 766130-766130.

Wang, L., Wu, Y., Tian, Y., Dai, T., Xie, G., Xu, Y., Chen, F. (2020): Overexpressing Jatropha curcas CBF2 in Nicotiana benthamiana improved plant tolerance to drought stress. Gene 742: 144588.

Rubio, S., Noriega, X., Pérez, F.J. (2019): Abscisic acid (ABA) and low temperatures synergistically increase the expression of CBF/DREB1 transcription factors and cold-hardiness in grapevine dormant buds. Annals of Botany 123(4): 681-689.

Karkute, S. G., Krishna, R., Ansari, W. A., Singh, B., Singh, P. M., Singh, M., Singh, A. K. (2019): Heterologous expression of the AtDREB1A gene in tomato confers tolerance to chilling stress. Biologia Plantarum 63(1): 268-277.

Du, Z., Li, J. (2019): Expression, purification and molecular characterization of a novel transcription factor KcCBF3 from Kandelia candel. Protein Expression and Purification 153: 26-34.

An, D., Ma, Q., Wang, H., Yang, J., Zhou, W., Zhang, P. (2017): Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava. Plant molecular biology 94(1): 109-124.

Yamasaki, Y., Randall, S.K. (2016): Functionality of soybean CBF/DREB1 transcription factors. Plant Science 246: 80–90.

Peng, T., Guo, C., Yang, J., Xu, M., Zuo, J., Bao, M., Zhang, J. (2016): Overexpression of a Mei (Prunus mume) CBF gene confers tolerance to freezing and oxidative stress in Arabidopsis. Plant Cell, Tissue and Organ Culture 126(3): 373-385.

Ma, L. F., Li, Y., Chen, Y., Li, X. B. (2016): Improved drought and salt tolerance of Arabidopsis thaliana by ectopic expression of a cotton (Gossypium hirsutum) CBF gene. Plant Cell, Tissue and Organ Culture 124(3): 583-598.

Byun, M. Y., Lee, J., Cui, L. H., Kang, Y., Oh, T. K., Park, H., Lee, H., Kim, W. T. (2015): Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Science 236: 61-74.

Kidokoro, S., Watanabe, K., Ohori, T., Moriwaki, T., Maruyama, K., Mizoi, J., Yamaguchi‐Shinozaki, K. (2015): Soybean DREB 1/CBF‐type transcription factors function in heat and drought as well as cold stress‐responsive gene expression. The Plant Journal 81(3): 505-518.

Zhou, M., Xu, M., Wu, L., Shen, C., Ma, H., Lin, J. (2014): CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling. Plant Molecular Biolog 85(3): 259-275.

Wang, R. K., Cao, Z. H., Hao, Y. J. (2014): Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples. Physiologia Plantarum 150(1): 76-87.

Dong, C., Zhang, M., Yu, Z., Ren, J., Qin, Y., Wang, B., Tao, J. (2013): Isolation and expression analysis of CBF4 from Vitis amurensis associated with stress. The Journal of Agricultural Science.

Li, Y., Yu, W., Lu, Q., Yang, S., Tıan, W. (2013): Effects of abiotic stresses on the expression of Heat Shock Transcription Factor (HSF) family members in Rubber tree (Hevea brasiliensis Muell. Arg.). CJTC 42(8): 2119.

Xu, M., Li, L., Fan, Y., Wan, J., Wang, L. (2011): ZmCBF3 overexpression improves tolerance to abiotic stress in transgenic rice (Oryza sativa) without yield penalty. Plant cell reports 30(10): 1949-1957.

Wang, C. T., Yang, Q., Yang, Y. M. (2011): Characterization of the ZmDBP4 gene encoding a CRT/DRE-binding protein responsive to drought and cold stress in maize. Acta Physiologiae Plantarum 33(2): 575-583.

Wisniewski, M., Norelli, J., Bassett, C., Artlip, T., Macarisin, D. (2011): Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus× domestica) results in short-day induced dormancy and increased cold hardiness. Planta 233(5): 971-983.

Morran, S., Eini, O., Pyvovarenko, T., Parent, B., Singh, R., Ismagul, A., Eliby, S., Shirley, N., Langridge, P., Lopato, S. (2011): Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnology Journal 9(2): 230-249.

Chen, X., Wang, P., Gu, M., Lin, X., Hou, B., Zheng, Y., Ye, N. (2021): R2R3-MYB transcription factor family in tea plant (Camellia sinensis): Genome-wide characterization, phylogeny, chromosome location, structure and expression patterns. Genomics 113(3): 1565-1578.

Bian, S., Jin, D., Sun, G., Shan, B., Zhou, H., Wang, J., Li, X. (2020): Characterization of the soybean R2R3-MYB transcription factor GmMYB81 and its functional roles under abiotic stresses. Gene 753: 144803.

Zhou, L., Yarra, R., Jin, L., Cao, H. (2020): Genome-wide identification and expression analysis of MYB gene family in oil palm (Elaeis guineensis Jacq.) under abiotic stress conditions. Environmental and Experimental Botany 180: 104245.

Wang, Y., Mao, Z., Jiang, H., Zhang, Z., Chen, X. (2019): A feedback loop involving MdMYB108L and MdHY5 controls apple cold tolerance. Biochemical and Biophysical Research Communications 512(2): 381-386.

Xie, Y., Chen, P., Yan, Y., Bao, C., Li, X., Wang, L., Shen, X., Li, H., Liu, X., Niu, C., Zhu, C., Fang, N., Shao, Y., Zhao, T., Yu, J., Zhu, J., Xu, L., van Nocker, S., Ma, F., Guan, Q. (2018): An atypical R2R3 MYB transcription factor increases cold hardiness by CBF‐dependent and CBF‐independent pathways in apple. New Phytologist 218(1): 201-218.

Yin, X., Cui, Y., Wang, M., Xia, X. (2017): Overexpression of a novel MYB-related transcription factor, OsMYBR1, confers improved drought tolerance and decreased ABA sensitivity in rice. Biochemical and Biophysical Research Communications 490(4): 1355-1361.

Gao, F., Zhou, J., Deng, R.Y., Zhao, H.X., Li, C.L., Chen, H., Wu, Q. (2017): Overexpression of a Tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis. Journal of Plant Physiology 214: 81-90.

Lee, S. B., Suh, M. C. (2015): Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Reports 34(4): 557-572.

Zhang, B., Hu, Z., Zhang, Y., Li, Y., Zhou, S., Chen, G. (2012): A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica oleracea var. acephala f. tricolor). Plant Cell Reports 31(2): 281-289.

Yang, A., Dai, X., Zhang, W. H. (2012): A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany 63(7): 2541-2556.

Xiao, P., Feng, J.W., Zhu, X.T., Gao, J. (2021): Evolution analyses of CAMTA transcription factor in plants and ıts enhancing effect on cold-tolerance. Frontiers in Plant Science 12.

Tang, T., Li, C.H., Li, D.S., Jing, S.X., Hua, J., Luo, S.H., Li, S.H. (2020): Peltate glandular trichomes of Colquhounia vestita harbor diterpenoid acids that contribute to plant adaptation to UV radiation and cold stresses. Phytochemistry 172: 112285.

Kidokoro, S., Yoneda, K., Takasaki, H., Takahashi, F., Shinozaki, K., Yamaguchi-Shinozaki, K. (2017): Different cold signaling pathways function in the responses to rapid and gradual decreases in Temperature. The Plant Cell 29(4): 760-774.

Kim, Y.S., An, C., Park, S., Gilmour, S.J., Wang, L., Renna, L., Thomashow, M.F. (2017): CAMTA mediated regulation of salicylic acid immunity pathway genes in Arabidopsis exposed to low temperature and pathogen infection. The Plant Cell 29(10): 2465-2477.

Yue, R., Lu, C., Sun, T., Peng, T., Han, X., Qi, J., Yan, S., Tie, S. (2015): Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses. Frontiers in Plant Science 6: 576.

Kim, Y., Park, S., Gilmour, S.J., Thomashow, M.F. (2013): Roles of CAMTA transcription factors and salicylic acid in configuring the low‐temperature transcriptome and freezing tolerance of Arabidopsis. The Plant Journal 75(3): 364-376.

Yan, L., Wencai, Y., Qingzhi, L., Shuguang, Y., Weimin, T. (2021): Effects of Abiotic Stresses on the Expression of Heat Shock Transcription Factor (HSF) Family Members in Rubber Tree (Hevea brasiliensis Muell. Arg.). Chinese Journal of Tropical Crops 42(8): 2119.

Jiang, C., Bi, Y., Zhang, R., Feng, S. (2020): Expression of RcHSP70, heat shock protein 70 gene from Chinese rose, enhances host resistance to abiotic stresses. Scientific Reports 10(1): 1-10.

Khorshidvand, M., Ismaili, A., Sohrabi, S.S., Haghjou, M.M. (2021): Identification and expression pattern of lentil’s HSPs under different abiotic stresses. Plant Biotechnology Reports 15(5): 609-625.

Zhang, N., Zhao, H., Shi, J., Wu, Y., Jiang, J. (2020): Functional characterization of class I SlHSP17. 7 gene responsible for tomato cold-stress tolerance. Plant Science 298: 110568.

Sun, T., Shao, K., Huang, Y., Lei, Y., Tan, L., Chan, Z. (2020): Natural variation analysis of Perennial ryegrass in response to abiotic stress highlights LpHSFC1b as a positive regulator of heat stress. Environmental and Experimental Botany 179: 104192.

Wencai, Y., Yan, L., Shaohua, W., Jinquan, C., Shixin, Z., Shuguang, Y., Weimin, T. (2019): Cloning of HbHsfA4a and Its Transcriptional Responses to Cold Stress in Hevea brasiliensis. Chinese Journal of Tropical Crops 40(5): 898.

Deng, X., Wang, J., Wang, J., Tian, W. (2018): Two HbHsfA1 and HbHsfB1 genes from the tropical woody plant rubber tree confer cold stress tolerance in Saccharomyces cerevisiae. Revista Brasileira de Botanica 41(3): 711-724.

Fei, J., Wang, Y.S., Zhou, Q., Gu, J.D. (2015): Cloning and expression analysis of HSP70 gene from mangrove plant Kandelia obovata under cold stress. Ecotoxicology 24(7): 1677-1685.




How to Cite

GALATALI, S. (2022). COLD STRESS: MOLECULAR EFFECTS ON MEDICINAL PLANTS: English. Türk Bilimsel Derlemeler Dergisi, 15(2), 63–78. Retrieved from




Most read articles by the same author(s)