CURRENT TRENDS IN PESTICIDE DETECTION VIA SURFACE ENHANCED RAMAN SPECTROSCOPY (SERS)
Abstract
As the world population increases, the demand for cheap and adequate food inflates, pushing the farming industry to make use of pesticides in growing amounts year by year. The excess use of pesticides threatens human and wild-life health by direct consumption or in indirect manners via accumulations in soil and ground water. Thus, to monitor the usage of pesticides in farming industry is of utmost importance for the sake of human health preservation of wild-life. Various analytical methods are being utilized in order to detect hazardous substances , however these methods require complex sample preparation procedures, expensive instruments and trained staff. Morever, these instruments are quite disadvantageous since the do not enable on-site analyses because of their massive structures. On the other hand, Surface Enhanced Raman Spectroscopy (SERS), which utilizes metallic nanoparticles enable detection at ultra-low concentrations and it enables on-site analyses with quite simple sample preparation procedures and portable spectrometers. In this review, basics of Raman and SERS is presented, current SERS substrates are explained, basic groups of pesticides are introduced and finally some of the current detection studies conducted via SERS are exhibited.
References
References:
[1] European Chemicals Agency, Chemical safety assessment, in: P. Wexler (Ed.), Encyclopedia of Toxicology, third ed.) (third ed., Academic Press, 2014, pp. 795–796, https://doi.org/10.1016/B978-0-12-386454-3.00575-3.
[2] Data taken from https://www.statista.com/statistics/1263077/global-pesticide-agricultural-use/, accessed online on 28.08.2025
[3] Ben-Zur, R., Hake, H., Hassoon, S., Bulatov, V., & Schechter, I. (2011). Optical analytical methods for detection of pesticides. Reviews in Analytical Chemistry, 30(3-4), 123-139.
[4] Umapathi, R., Park, B., Sonwal, S., Rani, G. M., Cho, Y., & Huh, Y. S. (2022). Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends in Food Science & Technology, 119, 69-89.
[5] Data taken from Web of Science (https://www.webofscience.com/wos/woscc/smart-search), using keywords “food + safety”. Accessed online on 28.08.2025
[6] Diuzheva, A., Dejmková, H., Fischer, J., & Andruch, V. (2019). Simultaneous determination of three carbamate pesticides using vortex-assisted liquid–liquid microextraction combined with HPLC-amperometric detection. Microchemical Journal, 150, 104071.
[7] Asensio‐Ramos, M., Hernández‐Borges, J., González‐Hernández, G., & Rodríguez‐Delgado, M. Á. (2012). Hollow‐fiber liquid‐phase microextraction for the determination of pesticides and metabolites in soils and water samples using HPLC and fluorescence detection. Electrophoresis, 33(14), 2184-2191.
[8] Stefanut, M. N., Dobrescu, M., Cata, A., Fitigau, F. I., Osser, G., Lile, I. E., ... & Ienascu, I. M. C. (2021). HPLC-DAD method for detection of some pesticide residues in soil and crops cultivated in Banat County. Journal of Science and Arts, 21(1), 307-314.
[9] Choudhary, P., Bhatt, S., Tandon, A., & Chatterjee, S. (2025). Development and validation of a rapid HPLC method for simultaneous detection and quantification of four broad-spectrum organophosphorus pesticides. International Journal of Environmental Analytical Chemistry, 1-13.
[10] Mohindroo, P., Varma, K. S., Bhagat, J., Zala, Y., Kadam, S., & Sarvaiya, J. (2023). A rapid pesticide detection approach in food forensics using hyphenated technology of TLC-electronic nose. Food and Humanity, 1, 188-198.
[11] Tuzimski, T. (2010). Application of HPLC and TLC with diode array detection after SPE to the determination of pesticides in water samples from the Zemborzycki Reservoir (Lublin, Southeastern Poland). Journal of AOAC international, 93(6), 1748-1756.
[12] Mrutoiu, C., Coman, V., Vlassa, M., & Constantinescu, R. (1998). A new detection of some organophosphorous pesticides separated by TLC. Journal of liquid chromatography & related technologies, 21(14), 2143-2149.
[13] Shao, Y., Wang, M., Cao, J., She, Y., Cao, Z., Hao, Z., ... & Abd El-Aty, A. M. (2023). A method for the rapid determination of pesticides coupling thin-layer chromatography and enzyme inhibition principles. Food chemistry, 416, 135822.
[14] Martínez-Uroz, M. A., Mezcua, M., Valles, N. B., & Fernández-Alba, A. R. (2012). Determination of selected pesticides by GC with simultaneous detection by MS (NCI) and μ-ECD in fruit and vegetable matrices. Analytical and bioanalytical chemistry, 402(3), 1365-1372.
[15] Hem, L., Khay, S., Choi, J. H., Morgan, E. D., Abd El-Aty, A. M., & Shim, J. H. (2010). Determination of trichlorfon pesticide residues in milk via gas chromatography with μ-electron capture detection and GC-MS. Toxicological research, 26(2), 149-155.
[16] Zhu, P., Miao, H., Du, J., Zou, J. H., Zhang, G. W., Zhao, Y. F., & Wu, Y. N. (2014). Organochlorine pesticides and pyrethroids in Chinese tea by screening and confirmatory detection using GC-NCI-MS and GC-MS/MS. Journal of Agricultural and Food Chemistry, 62(29), 7092-7100.
[17] Pérez-Serradilla, J. A., Mata-Granados, J. M., & Luque de Castro, M. D. (2010). Low-level determination of organochlorine pesticides in wines by automatic preconcentration and GC–MS–MS detection. Chromatographia, 71(9), 899-905.
[18] Yıldırım, İ., & Çiftçi, U. (2022). Monitoring of pesticide residues in peppers from Çanakkale (Turkey) public market using QuEChERS method and LC–MS/MS and GC–MS/MS detection. Environmental monitoring and assessment, 194(8), 570.
[19] Majumder, S., Mishra, P., Pandey, J., K, N., Sharma, S., Maurya, S., ... & Behera, T. K. (2025). Optimisation and application of the multi-residue analysis method for detection of 50 pesticides in cabbage by using LC-MS/MS-QuEChERS. International Journal of Environmental Analytical Chemistry, 105(10), 2326-2343.
[20] Patel, N. G., Dhale, D. A., & Rathod, M. C. (2024). Analysis of Pesticide Residue in Fruit Using the QuEChERS Method Coupled With LC-MS/MS Detection. Current Agriculture Research Journal, 12(2). [21] Zheng, K., Guo, Y., Hu, X., Yu, Y., Chen, J., Su, J., ... & Meng, X. (2023). Simultaneous detection of four pesticides in agricultural products by a modified QuEChERS method and LC-MS/MS. Journal of Environmental Science and Health, Part B, 58(2), 150-157.
[22] Zhai, R., Xu, D., Liu, B., Zhang, X., Liu, G., Chen, L., ... & Chen, G. (2025). Study of the sensitization mechanism of immunoassay based on DNA tetrahedron spatial mediation for detecting imidacloprid in vegetables. Journal of Advanced Research.
[23] Chen, H., An, L., Li, M., Liu, H., Jin, Z., Ma, H., ... & Wu, X. (2024). A self-assembled 3D nanoflowers based nano-ELISA platform for the sensitive detection of pyridaben. Food Chemistry, 445, 138756. [24] Zhu, W., Zhang, J., Zhang, Y., Zhang, H., Miao, K., Luo, J., & Yang, M. (2024). Establishment of a rapid and sensitive ic-ELISA for the detection of thiacloprid residues in honey and medicinal herbs using a novel highly specific monoclonal antibody. Ecotoxicology and Environmental Safety, 284, 116911.
[25] Wu, Y., Guo, Y., Yang, Q., Li, F., & Sun, X. (2022). The Effects of Different Antigen–Antibody Pairs on the Results of 20 Min ELISA and 8 Min Chromatographic Paper Test for Quantitative Detection of Acetamiprid in Vegetables. Biosensors, 12(9), 730.
[26] Li, H., Luo, X., Haruna, S. A., Zareef, M., Chen, Q., Ding, Z., & Yan, Y. (2023). Au-Ag OHCs-based SERS sensor coupled with deep learning CNN algorithm to quantify thiram and pymetrozine in tea. Food Chemistry, 428, 136798.
[27] Bruce, B. B., Gao, S., Ahlivia, E. B., & Zhang, D. (2025). Beyond the surface: SERS-enabled lateral flow assay for detecting food contaminants. Journal of Food Composition and Analysis, 108135.
[28] Li, C., Huang, Y., Li, X., Zhang, Y., Chen, Q., Ye, Z., ... & Xu, Y. (2021). Towards practical and sustainable SERS: a review of recent developments in the construction of multifunctional enhancing substrates. Journal of Materials Chemistry C, 9(35), 11517-11552.
[29] Raman, C. V., & Krishnan, K. S. (1928). A new type of secondary radiation. Nature, 121(3048), 501-502.
[30] Vandenabeele, P. (2013). Practical Raman spectroscopy: an introduction. John Wiley & Sons.
[31] Langer, J., Jimenez de Aberasturi, D., Aizpurua, J., Alvarez-Puebla, R. A., Auguié, B., Baumberg, J. J., ... & Liz-Marzán, L. M. (2019). Present and future of surface-enhanced Raman scattering. ACS nano, 14(1), 28-117.
[32] Wang, X., Liu, G., Hu, R., Cao, M., Yan, S., Bao, Y., & Ren, B. (2022). Principles of surface-enhanced Raman spectroscopy. In Principles and clinical diagnostic applications of surface-enhanced raman spectroscopy (pp. 1-32). Elsevier.
[33] Hardy, M., & Chu, H. O. M. (2025). Laser wavelength selection in Raman spectroscopy. Analyst, 150(10), 1986-2008.
[34] Fleischmann, M., Hendra, P. J., & McQuillan, A. J. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chemical physics letters, 26(2), 163-166..
[35] Jeanmaire, D. L., & Van Duyne, R. P. (1977). Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry and interfacial electrochemistry, 84(1), 1-20.
[36] Albrecht, M. G., & Creighton, J. A. (1977). Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society, 99(15), 5215-5217.
[37] Goel, R., Chakraborty, S., Awasthi, V., Bhardwaj, V., & Dubey, S. K. (2024). Exploring the various aspects of Surface enhanced Raman spectroscopy (SERS) with focus on the recent progress: SERS-active substrate, SERS-instrumentation, SERS-application. Sensors and Actuators A: Physical, 376, 115555.
[38] Peng, J., Song, Y., Lin, Y., & Huang, Z. (2024). Introduction and development of surface-enhanced Raman scattering (SERS) substrates: a review. Nanomaterials, 14(20), 1648.
[39] Yang, Q., Wu, Y., Chen, J., Lu, M., Wang, X., Zhang, Z., ... & Chen, L. (2024). Plasmonic nanomaterial-enhanced fluorescence and Raman sensors: Multifunctional platforms and applications. Coordination Chemistry Reviews, 507, 215768.
[40] Pilot, R. (2018). SERS detection of food contaminants by means of portable Raman instruments. Journal of Raman Spectroscopy, 49(6), 954-981.
[41] Lee, P. C., & Meisel, D. J. T. J. O. P. C. (1982). Adsorption and surface-enhanced Raman of dyes on silver and gold sols. The Journal of Physical Chemistry, 86(17), 3391-3395.
[42] Turkevich, J., Stevenson, P. C., & Hillier, J. (1953). The formation of colloidal gold. The Journal of Physical Chemistry, 57(7), 670-673.
[43] Giallongo, G., Pilot, R., Durante, C., Rizzi, G. A., Signorini, R., Bozio, R., ... & Granozzi, G. (2011). Silver nanoparticle arrays on a DVD-derived template: an easy&cheap SERS substrate. Plasmonics, 6(4), 725-733.
[44] Hoppmann, E. P., Wei, W. Y., & White, I. M. (2013). Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods, 63(3), 219-224.
[45] Wu, W., Liu, L., Dai, Z., Liu, J., Yang, S., Zhou, L., ... & Roy, V. A. (2015). Low-cost, disposable, flexible and highly reproducible screen printed SERS substrates for the detection of various chemicals. Scientific reports, 5(1), 10208.
[46] Armas, L. E. G., Menezes, J. W., Huila, M. G., Araki, K., & Toma, H. E. (2017). Gold Nanohole Arrays Fabricated by Interference Lithography Technique as SERS Probes for Chemical Species Such As Rhodamine 6G and 4, 4′-Bipyridine. Plasmonics, 12(4), 1015-1020.
[47] Colniță, A., Marconi, D., Dina, N. E., Brezeștean, I., Bogdan, D., & Turcu, I. (2022). 3D silver metallized nanotrenches fabricated by nanoimprint lithography as flexible SERS detection platform. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 276, 121232.
[48] Xue, X., Tang, X., Hu, C., Sun, J., Li, X., Yang, S., ... & Chen, C. (2025). High-uniformity, low-cost, ultra-dense arrays of Au-capped plastic nanopillars fabricated via nanoimprint lithography as reliable SERS substrates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 335, 125989.
[49] Zhao, X., Wen, J., Zhang, M., Wang, D., Wang, Y., Chen, L., ... & Du, Y. (2017). Design of hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography. ACS applied materials & interfaces, 9(8), 7710-7716.
[50] Yu, P., Ma, L., Yang, X., Xue, S., Zhang, Z., Sun, L., & Cai, J. (2025). Recent Developments and Applications of Surface-Enhanced Raman Scattering Spectroscopy in Pesticides Detection: From Single Pesticides to Mixed Pesticides. ACS omega.
[51] Wang, P., Li, H., Hassan, M. M., Guo, Z., Zhang, Z. Z., & Chen, Q. (2019). Fabricating an acetylcholinesterase modulated UCNPs-Cu2+ fluorescence biosensor for ultrasensitive detection of organophosphorus pesticides-diazinon in food. Journal of agricultural and food chemistry, 67(14), 4071-4079.
[52] Rani, M., Shanker, U., & Jassal, V. (2017). Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review. Journal of environmental management, 190, 208-222..
[53] Ravula, A. R., & Yenugu, S. (2021). Pyrethroid based pesticides–chemical and biological aspects. Critical Reviews in Toxicology, 51(2), 117-140.
[54] Cheshari, E. C., Ren, X., & Li, X. (2021). Core–shell Ag-dual template molecularly imprinted composite for detection of carbamate pesticide residues. Chemical Papers, 75(7), 3679-3693.
[55] Yuan, C., Liu, R., Wang, S., Han, G., Han, M. Y., Jiang, C., & Zhang, Z. (2011). Single clusters of self-assembled silver nanoparticles for surface-enhanced Raman scattering sensing of a dithiocarbamate fungicide. Journal of Materials Chemistry, 21(40), 16264-16270.
[56] Zhu, C., Zhao, Q., Meng, G., Wang, X., Hu, X., Han, F., & Lei, Y. (2020). Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue. Nanotechnology, 31(20), 205303..
[57] He, Q., Zhao, A., Li, L., Sun, H., Wang, D., Guo, H., ... & Chen, P. (2017). Fabrication of Fe 3 O 4@ SiO 2@ Ag magnetic–plasmonic nanospindles as highly efficient SERS active substrates for label-free detection of pesticides. New Journal of Chemistry, 41(4), 1582-1590..
[58] Wang, Y., Yu, X., Chang, Y., Gao, C., Chen, J., Zhang, X., & Zhan, J. (2019). A 3D spongy flexible nanosheet array for on-site recyclable swabbing extraction and subsequent SERS analysis of thiram. Microchimica Acta, 186(7), 458.
[59] Jiao, T., Hassan, M. M., Zhu, J., Ali, S., Ahmad, W., Wang, J., ... & Li, H. (2021). Quantification of deltamethrin residues in wheat by Ag@ ZnO NFs-based surface-enhanced Raman spectroscopy coupling chemometric models. Food Chemistry, 337, 127652.
[60] Li, Y., Yan, H., Zhou, R., Zheng, G., Yin, J., & He, A. (2025). Trace Detection of Deltamethrin via Au/Cu2O/ZnO SERS Substrates with Multiple Heterojunctions. Langmuir, 41(6), 3822-3831.
[61] Zhang, H., Nie, P., Xia, Z., Feng, X., Liu, X., & He, Y. (2020). Rapid quantitative detection of deltamethrin in Corydalis yanhusuo by SERS coupled with multi-walled carbon nanotubes. Molecules, 25(18), 4081.
[62] Dong, T., Lin, L., He, Y., Nie, P., Qu, F., & Xiao, S. (2018). Density functional theory analysis of deltamethrin and its determination in strawberry by surface enhanced Raman spectroscopy. Molecules, 23(6), 1458.
[63] Wang, P., Yang, Z., Tao, W., Liu, C., & Zhou, G. (2025). Citrate-capped gold nanoparticle SERS platforms for ultrasensitive detection of cypermethrin. Analytical Methods, 17(23), 4805-4811.
[64] Wang, Y., Wang, M., Sun, X., Shi, G., Zhang, J., Ma, W., & Ren, L. (2018). Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin. Optics express, 26(17), 22168-22181.
[65] Zhang, S., Xu, J., Liu, Z., Huang, Y., & Jiang, S. (2022). Facile, ecofriendly, and efficient preparation of flexible gold nanoparticles@ bacterial nanocellulose surface-enhanced Raman scattering sensors by magnetron sputtering for trace detection of hazardous materials. ACS Sustainable Chemistry & Engineering, 10(39), 13059-13069.
[66] Wang, M., Shi, G., Zhu, J., Zhu, Y., Sun, X., Wang, P., ... & Li, R. (2019). Preparation of a novel SERS platform based on mantis wing with high-density and multi-level “hot spots”. Nanomaterials, 9(5), 672.
[67] Filipczak, P., Borkowski, M., Chudobinski, P., Bres, S., Matusiak, M., Nowaczyk, G., & Kozanecki, M. (2020). Sodium citrate stabilized Ag NPs under thermal treatment, electron-beam and laser irradiations. Radiation Physics and Chemistry, 169, 107948.
[68] Serebrennikova, K. V., Komova, N. S., Aybush, A. V., Zherdev, A. V., & Dzantiev, B. B. (2023). Flexible substrate of cellulose fiber/structured plasmonic silver nanoparticles applied for label-free SERS detection of malathion. Materials, 16(4), 1475.
[69] Zhai, W., Cao, M., Xiao, Z., Li, D., & Wang, M. (2022). Rapid detection of malathion, phoxim and thiram on orange surfaces using Ag nanoparticle modified PDMS as surface-enhanced Raman spectroscopy substrate. Foods, 11(22), 3597.
[70] Li, J., Li, C., & Jiang, Z. (2023). TbMOF@ Au catalytic determination of trace malathion with aptamer SERS/RRS/Abs assay. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 294, 122581.
[71] Kubackova, J., Fabriciova, G., Miskovsky, P., Jancura, D., & Sanchez-Cortes, S. (2015). Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots. Analytical chemistry, 87(1), 663-669.
[72] Mohan, P. A., & Antony, A. (2022). Exploring the surface-enhanced Raman scattering on electrospun TiO2/Ag hybrid structure for pesticide detection. Plasmonics, 17(4), 1479-1488.
[73] Ding, Y., Liu, C., Shi, Y., Wang, L. X., Mao, Z. S., Sun, H., ... & Cao, Y. (2024). Dual-mode separation and SERS detection of carbaryl with PA-6/AuNRs@ ZIF-8 films. Analytical Chemistry, 96(5), 1941-1947.
[74] Zhang, Z., Si, T., Liu, J., & Zhou, G. (2019). In-situ grown silver nanoparticles on nonwoven fabrics based on mussel-inspired polydopamine for highly sensitive SERS carbaryl pesticides detection. Nanomaterials, 9(3), 384.
[75] Alsammarraie, F. K., & Lin, M. (2017). Using standing gold nanorod arrays as surface-enhanced Raman spectroscopy (SERS) substrates for detection of carbaryl residues in fruit juice and milk. Journal of agricultural and food chemistry, 65(3), 666-674.
[76] Pham, U. T., Phan, Q. H. T., Nguyen, L. P., Luu, P. D., Doan, T. D., Trinh, H. T., ... & Nguyen, D. T. (2022). Rapid quantitative determination of multiple pesticide residues in mango fruits by surface-enhanced Raman spectroscopy. Processes, 10(3), 442.
[77] Feng, X., Li, C., Liang, A., Luo, Y., & Jiang, Z. (2019). Doped N/Ag carbon dot catalytic amplification SERS strategy for acetamiprid coupled aptamer with 3, 3′-dimethylbiphenyl-4, 4′-diamine oxidizing reaction. Nanomaterials, 9(3), 480.
[78] Tang, X., Zeng, W., Wang, C., Pan, F., Wei, J., & Wu, L. (2025). Multifunctional Fe3O4@ ZIF-8@ Ag nanocomposites and electro-driven droplet adsorption strategy for SERS detection of acetamiprid. Chemical Engineering Journal, 508, 161149.
[79] Yang, J., Wen, G., Liang, A., & Jiang, Z. (2024). A new gold nanosol SERS method for ultratrace atrazine by a difunctional surface molecular imprinted polymethacrylate probe. Microchemical Journal, 200, 110431.
[80] Ahmad, R., Griffete, N., Lamouri, A., Felidj, N., Chehimi, M. M., & Mangeney, C. (2015). Nanocomposites of gold nanoparticles@ molecularly imprinted polymers: chemistry, processing, and applications in sensors. Chemistry of Materials, 27(16), 5464-5478.
[81] Chen, Z., Sun, Y., Shi, J., Zhang, W., Zhang, X., Huang, X., ... & Wei, R. (2022). Facile synthesis of Au@ Ag core–shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Food Chemistry, 370, 131276.
[82] Zhao, S. S., He, Z. H., Liu, X., Shen, Y., Tan, X. C., Wang, Q., ... & Zhu, W. W. (2024). Dialdehyde starch-enclosed silver nanoparticles substrate with controlled-release “hotspots” for ultrasensitive SERS detection of thiabendazole. Food Chemistry, 436, 137706.
[83] Fu, G., Sun, D. W., Pu, H., & Wei, Q. (2019). Fabrication of gold nanorods for SERS detection of thiabendazole in apple. Talanta, 195, 841-849.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Türk Bilimsel Derlemeler Dergisi

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

