KANNABİNOİDLERİN BİYOTEKNOLOJİK ÜRETİMİ

Abstract views: 0 / PDF downloads: 0

Authors

  • Zeynep AKYOL
  • Tugay TÜRKYILMAZ
  • Hülya AKDEMİR KOÇ GEBZE TEKNİK ÜNİVERSİTESİ

Keywords:

Cannabis, Cannabinoids, Tissue culture, Microbial Production

Abstract

Cannabis sativa L. is a plant with a multibillion-dollar international market due to its pharmacologically significant psychoactive chemical compounds known as cannabinoids. The recent legalization of its use for medicinal purposes has belatedly spurred studies on the production of this plant and its important components. Biotechnology-based cannabinoid production is a process that requires a biological system to provide the precursor isoprenoid units, coordinated expression of genes encoding enzymes in the entire biosynthetic pathway of the desired cannabinoids, and enzyme engineering strategies to utilize specific starting molecules. For cannabinoid production, cell and tissue culture studies in plants, as well as genetic transformation, present alternative methods to traditional production. Furthermore, in addition to transgenic plants, other heterologous hosts such as bacteria and yeast are being explored for the production of cannabinoids to modify and optimize the cannabinoid profile. This study compiles studies conducted to date in the fields of genetic engineering, biotechnology, metabolic engineering/synthetic biology for hemp production, hemp breeding, modification of cannabinoid content, and elucidation of existing pathways.

References

KAYNAKLAR

Sawler J, Stout JM, Gardner KM, Hudson D, Vidmar J, Butler L, et al. The genetic structure of marijuana and hemp. PLoS One 2015;10. https://doi.org/10.1371/journal.pone.0133292.

Lynch RC, Vergara D, Tittes S, White K, Schwartz CJ, Gibbs MJ, et al. Genomic and Chemical Diversity in Cannabis. CRC Crit Rev Plant Sci 2016;35:349–63. https://doi.org/10.1080/07352689.2016.1265363.

Dufresnes C, Jan C, Bienert F, Goudet J, Fumagalli L. Broad-scale genetic diversity of cannabis for forensic applications. PLoS One 2017;12. https://doi.org/10.1371/journal.pone.0170522.

Soler S, Gramazio P, Figàs MR, Vilanova S, Rosa E, Llosa ER, et al. Genetic structure of Cannabis sativa var. indica cultivars based on genomic SSR (gSSR) markers: Implications for breeding and germplasm management. Ind Crops Prod 2017;104:171–8. https://doi.org/10.1016/j.indcrop.2017.04.043.

Sc Bastian Zirpel aus Hannover M. Recombinant Expression and Functional Characterization of Cannabinoid Producing Enzymes in Komagataella phaffii Zur Erlangung des akademischen Grades eines. n.d.

de Meijer EPM, Vanderkamp HJ, Vaneeuwijk FA. Characterisation of Cannabis accessions with regard to cannabinoid content in relation to other plant characters 1992.

Vergara D, Bidwell LC, Gaudino R, Torres A, Du G, Ruthenburg TC, et al. Compromised External Validity: Federally Produced Cannabis Does Not Reflect Legal Markets. Sci Rep 2017;7. https://doi.org/10.1038/srep46528.

Jikomes N, Zoorob M. The Cannabinoid Content of Legal Cannabis in Washington State Varies Systematically Across Testing Facilities and Popular Consumer Products. Sci Rep 2018;8. https://doi.org/10.1038/s41598-018-22755-2.

Hazekamp A, Fischedick JT. Cannabis - from cultivar to chemovar. Drug Test Anal 2012;4:660–7. https://doi.org/10.1002/dta.407.

McPartland JM. Cannabis Systematics at the Levels of Family, Genus, and Species. Cannabis Cannabinoid Res 2018;3:203–12. https://doi.org/10.1089/can.2018.0039.

Clarke RC, Merlin MD. Letter to the Editor: Small, Ernest. 2015. Evolution and Classification of Cannabis sativa (Marijuana, Hemp) in Relation to Human Utilization. Botanical Review 81(3): 189-294. The Botanical Review 2015;81:295–305. https://doi.org/10.1007/s12229-015-9158-2.

Small E. Evolution and Classification of Cannabis sativa (Marijuana, Hemp) in Relation to Human Utilization. Botanical Review 2015;81:189–294. https://doi.org/10.1007/s12229-015-9157-3.

Schwabe AL, McGlaughlin ME. Genetic tools weed out misconceptions of strain reliability in Cannabis sativa: Implications for a budding industry. J Cannabis Res 2019;1. https://doi.org/10.1186/s42238-019-0001-1.

Gertsch J, Pertwee RG, Di Marzo V. Phytocannabinoids beyond the Cannabis plant - Do they exist? Br J Pharmacol 2010;160:523–9. https://doi.org/10.1111/j.1476-5381.2010.00745.x.

ElSohly MA, Mehmedic Z, Foster S, Gon C, Chandra S, Church JC. Changes in cannabis potency over the last 2 decades (1995-2014): Analysis of current data in the United States. Biol Psychiatry 2016;79:613–9. https://doi.org/10.1016/j.biopsych.2016.01.004.

Turner SE, Williams CM, Iversen L, Whalley BJ. Molecular Pharmacology of Phytocannabinoids 2017.

Crombie L, Ponsford R, Shani A, Yagnitinsky B, Mechoulam R. Hashish components. Photochemical production of cannabicyclol from cannabichromene 1968.

Preedy VR. Handbook of cannabis and related pathologies : biology, pharmacology, diagnosis, and treatment. n.d.

Carvalho Â, Hansen EH, Kayser O, Carlsen S, Stehle F. Designing microorganisms for heterologous biosynthesis of cannabinoids. FEMS Yeast Res 2017;17. https://doi.org/10.1093/femsyr/fox037.

Livingston SJ, Quilichini TD, Booth JK, Wong DCJ, Rensing KH, Laflamme-Yonkman J, et al. Cannabis glandular trichomes alter morphology and metabolite content during flower maturation. Plant Journal 2020;101:37–56. https://doi.org/10.1111/tpj.14516.

Hammond CT, Mahlberg PG. Ultrastructural Development of Capitate Glandular Hairs of Cannabis Sativa L. (Cannabaceae). vol. 65. 1978.

Tahir MN, Shahbazi F, Rondeau-Gagné S, Trant JF. The biosynthesis of the cannabinoids. J Cannabis Res 2021;3. https://doi.org/10.1186/s42238-021-00062-4.

Geissler M, Volk J, Stehle F, Kayser O, Warzecha H. Subcellular localization defines modification and production of Δ9-tetrahydrocannabinolic acid synthase in transiently transformed Nicotiana benthamiana. Biotechnol Lett 2018;40:981–7. https://doi.org/10.1007/s10529-018-2545-0.

Rodziewicz P, Loroch S, Marczak Ł, Sickmann A, Kayser O. Cannabinoid synthases and osmoprotective metabolites accumulate in the exudates of Cannabis sativa L. glandular trichomes. Plant Science 2019;284:108–16. https://doi.org/10.1016/j.plantsci.2019.04.008.

Stout JM, Boubakir Z, Ambrose SJ, Purves RW, Page JE. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. Plant Journal 2012;71:353–65. https://doi.org/10.1111/j.1365-313X.2012.04949.x.

Gagne SJ, Stout JM, Liu E, Boubakir Z, Clark SM, Page JE. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci U S A 2012;109:12811–6. https://doi.org/10.1073/pnas.1200330109.

Qiu J, Hou K, Li Q, Chen J, Li X, Hou H, et al. Boosting the Cannabidiol Production in Engineered Saccharomyces cerevisiae by Harnessing the Vacuolar Transporter BPT1. J Agric Food Chem 2022;70:12055–64. https://doi.org/10.1021/acs.jafc.2c05468.

Arif Y, Singh P, Bajguz A, Hayat S. Phytocannabinoids biosynthesis in angiosperms, fungi, and liverworts and their versatile role. Plants 2021;10. https://doi.org/10.3390/plants10071307.

Luo X, Reiter MA, d’Espaux L, Wong J, Denby CM, Lechner A, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 2019;567:123–6. https://doi.org/10.1038/s41586-019-0978-9.

Gülck T, Møller BL. Phytocannabinoids: Origins and Biosynthesis. Trends Plant Sci 2020;25:985–1004. https://doi.org/10.1016/j.tplants.2020.05.005.

Kosalková K, Barreiro C, Sánchez-Orejas IC, Cueto L, García-Estrada C. Biotechnological Fungal Platforms for the Production of Biosynthetic Cannabinoids. Journal of Fungi 2023;9. https://doi.org/10.3390/jof9020234.

Adhikary D, Kulkarni M, El-Mezawy A, Mobini S, Elhiti M, Gjuric R, et al. Medical Cannabis and Industrial Hemp Tissue Culture: Present Status and Future Potential. Front Plant Sci 2021;12. https://doi.org/10.3389/fpls.2021.627240.

Zirpel B. Recombinant expression and functional characterization of cannabinoid producing enzymes in Komagataella phaffii. Dissertation, Dortmund, Technische Universität, 2018, 2018.

Espinosa-Leal CA, Puente-Garza CA, García-Lara S. In vitro plant tissue culture: means for production of biological active compounds. Planta 2018;248. https://doi.org/10.1007/s00425-018-2910-1.

Petri G. 11.1 Cannabis sativa: In Vitro Production of Cannabinoids. n.d.

Loh WHT, Hartsel SC, Robertson LW. Tissue Culture of Cannabis sativa L. and in vitro Biotransformation of Phenolics 1983.

Chaohua C, Gonggu Z, Lining Z, Chunsheng G, Qing T, Jianhua C, et al. A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Ind Crops Prod 2016;83:61–5. https://doi.org/10.1016/j.indcrop.2015.12.035.

Bekheet SA. Encapsulation of date palm somatic embryos: synthetic seeds. Methods in Molecular Biology, vol. 1638, Humana Press Inc.; 2017, p. 71–8. https://doi.org/10.1007/978-1-4939-7159-6_7.

Zarei A, Feyissa BA, Davis B, Tavakouli Dinani E. Cannabis Synthetic Seeds: An Alternative Approach for Commercial Scale of Clonal Propagation and Germplasm Conservation. Plants 2022;11. https://doi.org/10.3390/plants11233186.

Lei R, Qiao W, Hu F, Jiang H, Zhu S. A simple and effective method to encapsulate tobacco mesophyll protoplasts to maintain cell viability. MethodsX 2015;2:24–32. https://doi.org/10.1016/j.mex.2014.11.004.

Beard KM, Boling AWH, Bargmann BOR. Protoplast isolation, transient transformation, and flow-cytometric analysis of reporter-gene activation in Cannabis sativa L. Ind Crops Prod 2021;164. https://doi.org/10.1016/j.indcrop.2021.113360.

Matchett-Oates L, Mohamaden E, Spangenberg GC, Cogan NOI. Development of a robust transient expression screening system in protoplasts of Cannabis. In Vitro Cellular and Developmental Biology - Plant 2021;57:1040–50. https://doi.org/10.1007/s11627-021-10178-0.

Pistelli L, Giardi MT, Rea G, Berra B, Giovannini A, Ruffoni B, et al. Chapter 13 Bio-Farms for Nutraceuticals: Functional Food and Safety Control by Biosensors edited by Hairy Root Cultures for Secondary Metabolites Production. n.d.

Wahby I, Caba JM, Ligero F. Agrobacterium infection of hemp (Cannabis sativa L.): establishment of hairy root cultures. J Plant Interact 2013;8:312–20. https://doi.org/10.1080/17429145.2012.746399.

Wahby I, Arráez-Román D, Segura-Carretero A, Ligero F, Caba JM, Fernández-Gutiérrez A. Analysis of choline and atropine in hairy root cultures of Cannabis sativa L. by capillary electrophoresis-electrospray mass spectrometry. Electrophoresis 2006;27:2208–15. https://doi.org/10.1002/elps.200500792.

Wahby I, Caba JM, Ligero F. Hairy root culture as a biotechnological tool in C. sativa. Cannabis Sativa L-Botany and Biotechnology 2017:299–317.

Farag S, Kayser O. Cannabinoids Production by Hairy Root Cultures of <i>Cannabis sativa</i> L. Am J Plant Sci 2015;06:1874–84. https://doi.org/10.4236/ajps.2015.611188.

Feeney M, Punja ZK. Tissue culture and Agrobacterium-mediated transformation of hemp (Cannabis sativa L.). In Vitro Cellular and Developmental Biology - Plant 2003;39:578–85. https://doi.org/10.1079/IVP2003454.

Ingvardsen CR, Brinch-Pedersen H. Challenges and potentials of new breeding techniques in Cannabis sativa. Front Plant Sci 2023;14. https://doi.org/10.3389/fpls.2023.1154332.

Lusarkiewicz-Jarzina AS´, Ponitka A, Kaczmarek Z. INFLUENCE OF CULTIVAR, EXPLANT SOURCE AND PLANT GROWTH REGULATOR ON CALLUS INDUCTION AND PLANT REGENERATION OF CANNABIS SATIVA L. vol. 47. 2005.

Sirkowski EE, Dedham MA. United States (12) Patent Application Publication. n.d.

Schachtsiek J, Hussain T, Azzouhri K, Kayser O, Stehle F. Virus-induced gene silencing (VIGS) in Cannabis sativa L. Plant Methods 2019;15. https://doi.org/10.1186/s13007-019-0542-5.

Hawkesford MJ. Transgenic Plants. Methods and Protocols. Edited by JM Dunwell and AC Wetten. Methods in Molecular Biology Series, Volume 847. Heidelberg, Germany: Springer (2012), pp. 512,£ 112.50. ISBN 978-1-61779-557-2. Exp Agric 2012;48:599–600.

Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol Adv 2015;33:1024–42. https://doi.org/10.1016/j.biotechadv.2015.03.012.

Wanas AS, Radwan MM, Mehmedic Z, Jacob M, Khan IA, Elsohly MA. Supporting Information Antifungal Activity of the Volatiles of High Potency Cannabis sativa L. Against Cryptococcus neoformans. vol. 10. 2016.

Sorokin A, Yadav NS, Gaudet D, Kovalchuk I. Transient expression of the β-glucuronidase gene in Cannabis sativa varieties. Plant Signal Behav 2020;15. https://doi.org/10.1080/15592324.2020.1780037.

MacKinnon L, McDougall G, Aziz N, Millam S. Progress towards transformation of fibre hemp. Annual Report of the Scottish Crop Research Institute, 2000/2001 2001:84–6.

Adhikary D, Khatri-Chhetri U, Tymm FJM, Murch SJ, Deyholos MK. A virus-induced gene-silencing system for functional genetics in a betalainic species, Amaranthus tricolor (Amaranthaceae). Appl Plant Sci 2019;7. https://doi.org/10.1002/aps3.1221.

Liu Y, Schiff M, Dinesh-Kumar SP. Virus-induced gene silencing in tomato. Plant Journal 2002;31:777–86. https://doi.org/10.1046/j.1365-313X.2002.01394.x.

Majumdar R, Rajasekaran K, Cary JW. RNA interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: Concepts and considerations. Front Plant Sci 2017;8. https://doi.org/10.3389/fpls.2017.00200.

Bisaro DM. Silencing suppression by geminivirus proteins. Virology 2006;344:158–68. https://doi.org/10.1016/j.virol.2005.09.041.

Matchett-Oates L, Spangenberg GC, Cogan NOI. Manipulation of Cannabinoid Biosynthesis via Transient RNAi Expression. Front Plant Sci 2021;12. https://doi.org/10.3389/fpls.2021.773474.

Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol 2019;14:456–64. https://doi.org/10.1038/s41565-019-0382-5.

Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 2017;3. https://doi.org/10.1038/nplants.2016.207.

Ahmed S, Gao X, Jahan MA, Adams M, Wu N, Kovinich N. Nanoparticle-based genetic transformation of Cannabis sativa. J Biotechnol 2021;326:48–51. https://doi.org/10.1016/j.jbiotec.2020.12.014.

Russo EB. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects LINKED ARTICLES. Br J Pharmacol 2011;163:1344–64. https://doi.org/10.1111/bph.2011.163.issue-7.

Karas JA, Wong LJM, Paulin OKA, Mazeh AC, Hussein MH, Li J, et al. The antimicrobial activity of cannabinoids. Antibiotics 2020;9:1–10. https://doi.org/10.3390/antibiotics9070406.

Ali EMM, Almagboul AZI, Khogali SME, Gergeir UMA. Antimicrobial Activity of <i>Cannabis sativa</i> L. Chin Med 2012;03:61–4. https://doi.org/10.4236/cm.2012.31010.

Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, et al. Antibacterial cannabinoids from Cannabis sativa: A structure-activity study. J Nat Prod 2008;71:1427–30. https://doi.org/10.1021/np8002673.

Van Klingeren B, Ten Ham AM. Antibacterial activity of A9-tetrahydrocannabinol and cannabidiol. vol. 42. 1976.

Thapa SB, Pandey RP, Il Park Y, Sohng JK. Biotechnological advances in resveratrol production and its chemical diversity. Molecules 2019;24. https://doi.org/10.3390/molecules24142571.

Madzak C. Yarrowia lipolytica: recent achievements in heterologous protein expression and pathway engineering. Appl Microbiol Biotechnol 2015;99:4559–77. https://doi.org/10.1007/s00253-015-6624-z.

Madzak C. Engineering Yarrowia lipolytica for Use in Biotechnological Applications: A Review of Major Achievements and Recent Innovations. Mol Biotechnol 2018;60:621–35. https://doi.org/10.1007/s12033-018-0093-4.

Liu C, Gong JS, Su C, Li H, Li H, Rao ZM, et al. Pathway engineering facilitates efficient protein expression in Pichia pastoris. Appl Microbiol Biotechnol 2022;106:5893–912. https://doi.org/10.1007/s00253-022-12139-y.

Clevenger KD, Bok JW, Ye R, Miley GP, Verdan MH, Velk T, et al. A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat Chem Biol 2017;13:895–901. https://doi.org/10.1038/nchembio.2408.

Guzmán-Chávez F, Zwahlen RD, Bovenberg RAL, Driessen AJM. Engineering of the filamentous fungus penicillium chrysogenumas cell factory for natural products. Front Microbiol 2018;9. https://doi.org/10.3389/fmicb.2018.02768.

Sakekar AA, Gaikwad SR, Punekar NS. Protein expression and secretion by filamentous fungi. J Biosci 2021;46. https://doi.org/10.1007/s12038-020-00120-8.

Arnau J, Yaver D, Hjort CM. Strategies and Challenges for the Development of Industrial Enzymes Using Fungal Cell Factories. Grand Challenges in Biology and Biotechnology, Springer Science and Business Media B.V.; 2020, p. 179–210. https://doi.org/10.1007/978-3-030-29541-7_7.

Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H, Shoyama Y, et al. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 2009;583:2061–6. https://doi.org/10.1016/j.febslet.2009.05.024.

Dekishima Y, Lan EI, Shen CR, Cho KM, Liao JC. Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J Am Chem Soc 2011;133:11399–401. https://doi.org/10.1021/ja203814d.

Ignea C, Pontini M, Maffei ME, Makris AM, Kampranis SC. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol 2014;3:298–306. https://doi.org/10.1021/sb400115e.

Apel AR, D’Espaux L, Wehrs M, Sachs D, Li RA, Tong GJ, et al. A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae. Nucleic Acids Res 2017;45:496–508. https://doi.org/10.1093/nar/gkw1023.

Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2007;2:953–71. https://doi.org/10.1038/nprot.2007.131.

Emanuelsson O, Nielsen H, Von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. 1999.

Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 2001;305:567–80. https://doi.org/10.1006/jmbi.2000.4315.

Gülck T, Booth JK, Carvalho, Khakimov B, Crocoll C, Motawia MS, et al. Synthetic Biology of Cannabinoids and Cannabinoid Glucosides in Nicotiana benthamiana and Saccharomyces cerevisiae. J Nat Prod 2020;83:2877–93. https://doi.org/10.1021/acs.jnatprod.0c00241.

Schmidt C, Aras M, Kayser O. Engineering cannabinoid production in Saccharomyces cerevisiae. Biotechnol J 2024;19. https://doi.org/10.1002/biot.202300507.

Zirpel B, Stehle F, Kayser O. Production of Δ9-tetrahydrocannabinolic acid from cannabigerolic acid by whole cells of Pichia (Komagataella) pastoris expressing Δ9-tetrahydrocannabinolic acid synthase from Cannabis sativa l. Biotechnol Lett 2015;37:1869–75. https://doi.org/10.1007/s10529-015-1853-x.

Taura F, Dono E, Sirikantaramas S, Yoshimura K, Shoyama Y, Morimoto S. Production of Δ1-tetrahydrocannabinolic acid by the biosynthetic enzyme secreted from transgenic Pichia pastoris. Biochem Biophys Res Commun 2007;361:675–80. https://doi.org/10.1016/j.bbrc.2007.07.079.

Zirpel B, Degenhardt F, Zammarelli C, Wibberg D, Kalinowski J, Stehle F, et al. Optimization of Δ9-tetrahydrocannabinolic acid synthase production in Komagataella phaffii via post-translational bottleneck identification. J Biotechnol 2018;272–273:40–7. https://doi.org/10.1016/j.jbiotec.2018.03.008.

Ma J, Gu Y, Xu P. Biosynthesis of cannabinoid precursor olivetolic acid in genetically engineered Yarrowia lipolytica. Commun Biol 2022;5. https://doi.org/10.1038/s42003-022-04202-1.

Kufs JE, Reimer C, Steyer E, Valiante V, Hillmann F, Regestein L. Scale-up of an amoeba-based process for the production of the cannabinoid precursor olivetolic acid. Microb Cell Fact 2022;21. https://doi.org/10.1186/s12934-022-01943-w.

Chen X, Köllner TG, Jia Q, Norris A, Santhanam B, Rabe P, et al. Terpene synthase genes in eukaryotes beyond plants and fungi: Occurrence in social amoebae. Proc Natl Acad Sci U S A 2016;113:12132–7. https://doi.org/10.1073/pnas.1610379113.

Barnett R, Stallforth P. Natural Products from Social Amoebae. Chemistry - A European Journal 2018;24:4202–14. https://doi.org/10.1002/chem.201703694.

Reimer C, Kufs JE, Rautschek J, Regestein L, Valiante V, Hillmann F. Engineering the amoeba Dictyostelium discoideum for biosynthesis of a cannabinoid precursor and other polyketides. Nat Biotechnol 2022;40:751–8. https://doi.org/10.1038/s41587-021-01143-8.

Reimer C, Herbst R, Kufs JE, Rautschek J, Ueberschaar N, Zhang S, et al. Yellow polyketide pigment suppresses premature hatching in social amoeba 2022. https://doi.org/10.1073/pnas.

Abu-Ghosh S, Dubinsky Z, Verdelho V, Iluz D. Unconventional high-value products from microalgae: A review. Bioresour Technol 2021;329. https://doi.org/10.1016/j.biortech.2021.124895.

Thomas F, Schmidt C, Kayser O. Bioengineering studies and pathway modeling of the heterologous biosynthesis of tetrahydrocannabinolic acid in yeast n.d. https://doi.org/10.1007/s00253-020-10798-3/Published.

Shi L, Tu BP. Acetyl-CoA and the regulation of metabolism: Mechanisms and consequences. Curr Opin Cell Biol 2015;33:125–31. https://doi.org/10.1016/j.ceb.2015.02.003.

Sarria S, Wong B, Martín HG, Keasling JD, Peralta-Yahya P. Microbial synthesis of pinene. ACS Synth Biol 2014;3:466–75. https://doi.org/10.1021/sb4001382.

Bonini SA, Premoli M, Tambaro S, Kumar A, Maccarinelli G, Memo M, et al. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J Ethnopharmacol 2018;227:300–15. https://doi.org/10.1016/j.jep.2018.09.004.

Ingvardsen CR, Brinch-Pedersen H. Challenges and potentials of new breeding techniques in Cannabis sativa. Front Plant Sci 2023;14. https://doi.org/10.3389/fpls.2023.1154332.

Deguchi M, Bogush D, Weeden H, Spuhler Z, Potlakayala S, Kondo T, et al. Establishment and optimization of a hemp (Cannabis sativa L.) agroinfiltration system for gene expression and silencing studies. Sci Rep 2020;10. https://doi.org/10.1038/s41598-020-60323-9.

Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, Voytas DF. Plant gene editing through de novo induction of meristems. Nat Biotechnol 2020;38:84–9. https://doi.org/10.1038/s41587-019-0337-2.

Braich S, Baillie RC, Jewell LS, Spangenberg GC, Cogan NOI. Generation of a Comprehensive Transcriptome Atlas and Transcriptome Dynamics in Medicinal Cannabis. Sci Rep 2019;9. https://doi.org/10.1038/s41598-019-53023-6.

Gao S, Wang B, Xie S, Xu X, Zhang J, Pei L, et al. A high-quality reference genome of wild Cannabis sativa. Hortic Res 2020;7. https://doi.org/10.1038/s41438-020-0295-3.

Vincent D, Binos S, Rochfort S, Spangenberg G. Top-down proteomics of medicinal cannabis. Proteomes 2019;7. https://doi.org/10.3390/proteomes7040033.

Monthony AS, Page SR, Hesami M, Jones AMP. The past, present and future of Cannabis sativa tissue culture. Plants 2021;10:185.

Gordon-Kamm B, Sardesai N, Arling M, Lowe K, Hoerster G, Betts S, et al. Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants 2019;8:38.

Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, Palatnik JF, et al. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat Biotechnol 2020;38:1274–9.

Patel P. Inducing Somatic Embryogenesis in Industrial Hemp (Cannabis sativa) Tissue Callus 2019.

Nic-Can GI, Galaz-Ávalos RM, De-la-Peña C, Alcazar-Magaña A, Wrobel K, Loyola-Vargas VM. Somatic embryogenesis: Identified factors that lead to embryogenic repression. A case of species of the same genus. PLoS One 2015;10. https://doi.org/10.1371/journal.pone.0126414.

Mookkan M, Nelson-Vasilchik K, Hague J, Zhang ZJ, Kausch AP. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep 2017;36:1477–91. https://doi.org/10.1007/s00299-017-2169-1.

Hoerster G, Wang N, Ryan L, Wu E, Anand A, McBride K, et al. Use of non-integrating Zm-Wus2 vectors to enhance maize transformation: Non-integrating WUS2 enhances transformation. In Vitro Cellular and Developmental Biology - Plant 2020;56:265–79. https://doi.org/10.1007/s11627-019-10042-2.

Florez SL, Erwin RL, Maximova SN, Guiltinan MJ, Curtis WR. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol 2015;15. https://doi.org/10.1186/s12870-015-0479-4.

Deguchi M, Kane S, Potlakayala S, George H, Proano R, Sheri V, et al. Metabolic Engineering Strategies of Industrial Hemp (Cannabis sativa L.): A Brief Review of the Advances and Challenges. Front Plant Sci 2020;11. https://doi.org/10.3389/fpls.2020.580621.

Downloads

Published

2024-12-12

How to Cite

AKYOL, Z., TÜRKYILMAZ, T., & AKDEMİR KOÇ, H. (2024). KANNABİNOİDLERİN BİYOTEKNOLOJİK ÜRETİMİ. Türk Bilimsel Derlemeler Dergisi, 17(2). Retrieved from https://derleme.gen.tr/index.php/derleme/article/view/479

Issue

Section

Articles