ARBUSCULAR MİKORİZAL FUNGUSLARIN BAĞCILIKTA BİTKİ GELİŞİMİ, HASTALIK, YABANCI OT VE NEMATOD MÜCADELESİNDE ETKİNLİKLERİ
Abstract views: 270 / PDF downloads: 254Abstract
Mikorizalar toprakta yaşamını sürdüren fungal mikroorganizmalardır. Mikorizal funguslar birçok kültür bitkisinde kolonize olabilmektedirler ve konukçu bitkilerde etkileri değişkenlik göstermektedir. Mikorizal funguslar kolonize oldukları bitki kökünden besin elementlerini alırken bitkinin vegetatif gelişimini de teşvik etmektedirler. Bu funguslar aynı zamanda bitkilerin kökleri vasıtasıyla doğrudan alınamayan bazı elementlerin de bitkilerin bünyesine alınabilmesine yardımcı olmaktadırlar. Bununla birlikte mikorizalar ürettikleri bileşenlerle konukçu bitki savunma sistemlerini uyarmakta, bu sayede hastalık ve zararlılara karşı bitkilerin daha dayanıklı olmasına yardımcı olmaktadırlar. Bu funguslar ayrıca birçok patojen, bitki paraziti nematod ve fungus ile de interraksiyona girmekte ve bu ilişkileri fungal gelişimlerini engelleyici veya teşvik edici ya da inerraksiyona girdikleri etmenin gelişimini etkileyici şekilde olmaktadır. Bağ alanlarında da birçok mikorizal fungus türü toprakta bulunmakta ve bunların asma köklerinde kolonize oldukları bilinmektedir. Bu derlemede mikorizal funguslar ve bağ alanlarında teşhisi yapılmış olan türleri hakkında bilgiler verilmiştir. Aynı zamanda bu fungusların hastalık, yabancı ot ve nematodlarla olan interraksiyonları tartışılmış, asmaların gelişimlerine olan etkileri detaylıca açıklanmaya çalışılmıştır.
References
OIV, (2018): Statistical Data for World Vitiviniculture.
Alleweldt, G., Spıegel-Roy, P., Reİsch, B. (1990): Grapes (Vitis). In: J. N.Moore And J. R. Ballington (Eds.): Genetic Resources of Temperate Fruit and Nut Crops. Acta Hortic. 290, 291-337.
Nyczepir, A.P. and J.O. Becker, (1998): Fruit and Citrus Trees. In: Plant and Nematode Interactions. Ch. 26. pp. 637-684.
Nayba, N., Javed, S. A., Khan, Z. Ullah and Khan, H.U. (2012): Estimation and Prevalence of Plant Parasitic Nematodes Associated with Twelve Fruit Trees in Pakistan. Pakistan Journal of Phytopathology 24, 63–68.
Bello, A., M. Arias, J. A. López-Pérez, A. Garcia-Álvarez, J. Fresno, M. Escuer, S. C. Arcos, A. Lacasa, R. Sanz, P. Gómez, M. A. Diez-Rojo, A. Piedra Buena, C. Goıtıa, J. L. De La Horra, Martinez, C. (2004): Biofumigation, Fallow, and Nematode Management in Vineyard Replant. Nematropica 34: 53-64.
Bahadur, A. (2021): Nematodes Diseases of Fruits and Vegetables Crops in India. In C. Cristiano, & T. E. Kaspary (Eds.), Nematodes - Recent Advances, Management and New Perspectives. IntechOpen. https://doi.org/10.5772/intechopen.98850.
Sanguankeo, P., Leon, R., Malone, J. (2009): Impact of Weed Management Practices on Grapevine Growth and Yield Components. Weed Science - WEED SCI. 57. 103-107. 10.1614/WS-08-100.1.
Byrne, M.E., Howell, G.S. (1978): Initial Response of Baco Noir Grapevines to Pruning Severity, Sucker Removal, and Weed Control. Amer. J. Enol. Viticult. 29, 192-198.
Kumar, S., Bhowmick, M., Ray, P. (2021): Weeds as Alternate and Alternative Hosts of Crop Pests. Indian Journal of Weed Science. 53. 14-29. 10.5958/0974-8164.2021.00002.2.
Izadpanah, K., Zaki-aghl, M., Zhang, Y. P., Daubert,S. D., and Rowhani, A., (2003): Bermuda Grass as A Potential Reservoir Host for Grapevine Fanleaf Virus. Plant Dis. 87:1179-1182.
Murant, A. F., Taylor, C. E. (1965): Treatment of Soil with Chemicals to Prevent Transmission of Tomato Black Ring and Raspberry Ringspot Viruses by Longidorus elongatus (de (Man). Annals of Applied Biology, 55, 227-237.
Ulukapı, K., Şener, S. (2017): Antalya İlinin Organik Bitkisel Üretim Potansiyelinin Dünya ve Türkiye ile Kıyaslanması ve Gelişmesine Yönelik Öneriler . Nevşehir Bilim ve Teknoloji Dergisi , Cilt:6 ICAFOF Özel Sayı , 271-279 . DOI: 10.17100/nevbiltek.322983.
Zaller, J. G., Cantelmo, C., Santos, G. D., Muther, S., Gruber, E., Pallua, P., Mandl, K., Friedrich, B., Hofstetter, I., Schmuckenschlager, B., Faber, F. (2018): Herbicides in Vineyards Reduce Grapevine Root Mycorrhization and Alter Soil Microorganisms and The Nutrient Composition in Grapevine Roots, Leaves, Xylem Sap and Grape Juice. Environ Sci Pollut Res Int. 25(23):23215-23226. doi: 10.1007/s11356-018-2422-3. Epub. PMID: 29862481; PMCID: PMC6096560.
Schouteden, N., De Waele, D., Panis, B., Vos, C. M. (2015): Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved. Frontiers in microbiology, 6, 1280. https://doi.org/10.3389/fmicb.2015.01280.
Jansa, J., Treseder, K. K. (2017): Introduction. Mycorrhizal Mediation of Soil, 343–355. doi:10.1016/b978-0-12-804312-7.00019-x.
Pepe, A., Giovannetti, M., & Sbrana, C. (2018): Lifespan and Functionality of Mycorrhizal Fungal Mycelium are Uncoupled from Host Plant Lifespan. Scientific reports, 8(1), 1-10.
Smith, S. E., Read, D. (2008): Mycorrhizas in Agriculture, Horticulture and Forestry. Mycorrhizal Symbiosis (Third Edition), Academic Press, London, ISBN: 978-0-12- 370526-6, 611-XVIII.
Johnson, N. C., Gehring, C. A. (2007): Mycorrhizas: Symbiotic Mediators of Rhizosphere and Ecosystem Processes. The Rhizosphere, 73–100. doi:10.1016/b978-012088775-0/50006-9
Rinaldi, A., Comandini, O., Kuyper, T. (2008): Ectomycorrhizal Fungal Diversity: Separating The Wheat from The Chaff. Fungal Diversity 33 (2008). 33.
Hacskaylo, E., (1972): Mycorrhiza: The Ultimate in Reciprocal Parasitism?, BioScience, Volume 22, Issue 10, Pages 577-583, https://doi.org/10.2307/1296203
Blasius, D., Feil, W., Kottke, I., Oberwinkler, F. (2008): Hartig Net Formation in Fully Ensheated Ectomycorrhizas. Nordic Journal of Botany. 6. 837 - 842. 10.1111/j.1756-1051.1986.tb00487.x.
Marschner, H. (2012): Marschner’s Mineral Nutrition of Higher Plants. Vol. 89, Academic Press, London, 651. https://www.elsevier.com/books/marschners-mineral-nutrition-of-higher-plants/marschner/978-0-12-384905-2.
Kibar, B., Pekşen, A. (2007): Ektomikorizanın tarım ve ormancılık bakımından önemi Anadolu Tarım Bilimleri Dergisi, 22(2), 232-238. Retrieved from https://dergipark.org.tr/tr/pub/omuanajas/issue/20227/214345.
Den Bakker, H. C., Zuccarello, G. C., Kuyper, T. W., & Noordeloos, M. E. (2004): Evolution and Host Specificity in The Ectomycorrhizal Genus Leccinum. New Phytologist, 163(1), 201–215. doi:10.1111/j.1469-8137.2004.01090.x
Holátko, J., Brtnický, M., Kučerík, J., Kotianová, M., Elbl, J., Kintl, A,, Kynický, J., Benada, O., Datta, R., Jansa, J. (2021): Glomalin – Truths, myths, and the future of this elusive soil glycoprotein. Soil Biol Biochem 153:108116
Selosse, M.A., Roy, M. (2009): Green Plants That Feed on Fungi: Facts and Questions About Mixotrophy. Trends in Plant Science 14, 64–70.
Kristiansen, K.A., Taylor, D. L., Kjøller, R., Rasmussen, H., Rosendahl, S. (2001): Identification of Mycorrhizal Fungi from Single Pelotons of Dactylorhiza majalis (Orchidaceae) Using Single-Strand Conformation Polymorphism and Mitochondrial Ribosomal Large Subunit DNA Sequences. Molecular Ecology. 10. 2089-93. 10.1046/j.0962-1083.2001.01324.x.
Huey, C., Uda, M., Zulhaimi, H., Jaafar, M. N., Kasim, F., Yaakub, A. (2020): Mycorrhiza: A Natural Resource Assists Plant Growth Under Varied Soil Conditions. 3 Biotech. 10. 10.1007/s13205-020-02188-3.
Bonfante, P, Genre, A. (2008): Plants and Arbuscular Mycorrhizal Fungi: An Evolutionary-Developmental Perspective. Trends Plant Sci. 2008 Sep;13(9):492-8. doi: 10.1016/j.tplants.2008.07.001. Epub. PMID: 18701339.
Giovannini, L., Palla, M., Agnolucci, M., Avio, L., Sbrana, C., Turrini, A., Giovannetti, M. (2020): Arbuscular Mycorrhizal Fungi and Associated Microbiota as Plant Biostimulants: Research Strategies for the Selection of the Best Performing Inocula. Agronomy. 10, 106. https://doi.org/10.3390/agronomy10010106.
Walker, C., Gollotte, A., Redecker, D. (2018): A New Genus, Planticonsortium (Mucoromycotina), and New Combination (P. tenue), for The Fine Root Endophyte, Glomus tenue (basionym Rhizophagus tenuis). Mycorrhiza 28:213–219.
Stürmer, S.L., Bever, J.D., Morton J.B. (2018): Biogeography of Arbuscular Mycorrhizal Fungi (Glomeromycota): A Phylogenetic Perspective on Species Distribution Patterns. Mycorrhiza. 28:587–603.
Douds, D.D. and Millner, P.D. (1999): Biodiversity of Arbuscular Mycorrhizal Fungi in Agroecosystems. Agriculture, Ecosystems & Environment, 74, 77-93.
http://dx.doi.org/10.1016/S0167-8809(99)00031-6.
Wang, B., Qiu, Y.L. (2006): Phylogenetic Distribution and Evolution of Mycorrhizas in Land Plants. Mycorrhiza. 16. 299-363. 10.1007/s00572-005-0033-6.
Kennedy, A. C., de Luna, L. Z. (2005): Rhizosphere. Encyclopedia of Soils in the Environment, 399–406. doi:10.1016/b0-12-348530-4/00163-6.
Wang, Y., He, X., Yu, F. (2021): Non-host plants: Are They Mycorrhizal Networks Players? Plant Diversity. doi:10.1016/j.pld.2021.06.005.
Rillig, M.C. and Mummey, D.L. (2006), Mycorrhizas and Soil Structure. New Phytologist, 171: 41-53. https://doi.org/10.1111/j.1469-8137.2006.01750.x
Valentine, A., Mortimer, P., Lintnaar, M. Borgo, R. (2006). Drought responses of arbuscular mycorrhizal grapevines. Symbiosis. 41. 127-133.
Almaca, A. (2015): Tarımsal Üretimde Mikorizanın Önemi . Harran Tarım ve Gıda Bilimleri Dergisi, 18 (2), 56-65.
Palta, Ş., Demir, S., Şengönül, K., Kara, Ö., Şensoy, H., (2010): Arbüsküler Mikorizal Funguslar (AMF) Bitki ve Toprakla İlişkileri, Mera Islahındaki Önemleri. Bartın Orman Fak. Der. Cilt: 12, Sayı: 18. S.87-98.
Trouvelot, S., Bonneau, L., Redecker, D., van Tuinen, D., Adrian, M., Wipf, D. (2015): Arbuscular Mycorrhiza Symbiosis in Viticulture: A Review. Agronomy for Sustainable Development. 35. 10.1007/s13593-015-0329-7.
Sosa-Hernández, M.A., Leifheit, E. F., Ingraffia, R. and Rillig, M. C. (2019): Subsoil Arbuscular Mycorrhizal Fungi for Sustainability and Climate-Smart Agriculture: A Solution Right Under Our Feet? Front. Microbiol. 10:744. doi: 10.3389/fmicb.2019.00744.
Torres, N., Hilbert, G., Antolín, M. C., & Goicoechea, N. (2019): Aminoacids and Flavonoids Profiling in Tempranillo Berries Can Be Modulated by the Arbuscular Mycorrhizal Fungi. Plants (Basel, Switzerland), 8(10), 400. https://doi.org/10.3390/plants8100400
Burri, K., Gromke, C., Graf, F. (2011): Mycorrhizal Fungi Protect The Soil From Wind Erosion: A Wind Tunnel Study. Land Degradation & Development, 24(4), 385–392. doi:10.1002/ldr.1136.
Linderman, R.G. & Davis, E.A.. (2001): Comparative Response of Selected Grapevine Rootstocks and Cultivars to Inoculation with Different Mycorrhizal Fungi. American Journal of Enology and Viticulture. 52. 8-11.
Karagiannidis, N., Nikolaou, N. (1999): Arbuscular Mycorrhizal Root İnfection As An Important Factor of Grapevine Nutrition Status. Multivariate Analysis Application For Evaluation And Characterization of The Soil And Leaf Parameters. Agrochimica 43:151–165.
Schellenbaum, L., Berta, G., Ravolanirina, F., Tisserant, B., Gianınazzi, S., Fitter, A. H. (1991): Influence of Endomycorrhizal Infection on Root Morphology in a Micropropagated Woody Plant Species (Vitis vinifera L.). Annals of Botany, 68(2), 135–141. doi:10.1093/oxfordjournals.aob.a088231.
Özdemir, G., Akpinar, C., Sabir, A., Bilir, H., Tangolar, S., Ortas, I. (2010): Effect of Inoculation with Mycorrhizal Fungi on Growth and Nutrient Uptake of Grapevine Genotypes (Vitis spp.). European Journal of Horticultural Science 75: 103-110.
Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Zhang, L. (2019): Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in Plant Science, 10.
Hashem, A., Alqarawi, A. A., Radhakrishnan, R., Al-Arjani, A. F., Aldehaish, H. A., Egamberdieva, D., et al. (2018): Arbuscular Mycorrhizal Fungi Regulate The Oxidative System, Hormones and Ionic Equilibrium to Trigger Salt Stress Tolerance in Cucumis sativus L. Saudi J. Biol. Sci. 25 (6), 1102–1114. doi: 10.1016/j.sjbs.2018.03.009.
Zhu, X.C., Song, F. B., Xu, H.W. (2010): Arbuscular Mycorrhizae İmproves Low Temperature Stress in Maize via Alterations in Host Water Status and Photosynthesis. Plant Soil 331:129–137.
Abdel Latef, A.A., Chaoxing, H. (2011): Arbuscular Mycorrhizal İnfluence on Growth, Photosynthetic Pigments, Osmotic Adjustment and Oxidative Stress in Tomato Plants Subjected to Low Temperature Stress. Acta Physiol Plant 33:1217–1225.
Bavaresco, L., Gatti, M., Zamboni, M. et al. (2010): Role of Artificial Mycorrhization on İron Uptake in Calcareous Soils, on Stilbene Root Synthesis and in Other Physiological Processes in Grapevine. 33rd OIV World Congress of Vine and Wine. 8th General Assembly of The OIV, Tiblisi Georgia.
Tsvetkov, I., Dzhambazova, T., Kondakova, V., Batchvarova, R. (2014): Mycorrhizal Fungi Glomus spp. and Trichoderma spp. in Viticulture (review). Bulgarian Journal of Agricultural Science. 20. 849-855.
Aguilera, P., Ortiz, N., Becerra, N., Turrini, A., Gainza-Cortés, F., Silva-Flores, P., Aguilar-Paredes, A., Romero, J., Jorquera-Fontena, E., Mora, M. L., Borie, F. (2022): Application of Arbuscular Mycorrhizal Fungi in Vineyards: Water and Biotic Stress Under a Climate Change Scenario: New Challenge for Chilean Grapevine Crop. Frontiers in Microbiology. 13. 826571. 10.3389/fmicb.2022.826571.
Kloepper, J., Schroth, M.N. (1978): Plant Growth-Promoting Rhizobacteria on Radishes. IV İnternational Conference on Plant Pathogenic Bacteria. France. 2. 879-882.
Staddon, P. L., Heinemeyer, A., Fitter, A. H. (2002): Mycorrhizas and Global Environmental Change: Research At Different Scales. Plant and Soil 244: 253– 261.
Gavito, M. E., P. A. Olsson, H. Rouhier, A. Medina-Penafiel, I. Jakobsen, A. Bago, and Azcon-Aguilar, C. (2005): Temperature Constraints on The Growth and Functioning of Root Organ Cultures With Arbuscular Mycorrhizal Fungi. New Phytologist 168:179-188.
Abdel Motaleb, N. A., Abd Elhady, S. A.,Ghoname, A. A (2020): Gesunde Pflanzen; Dordrecht Vol. 72, Iss. 1, 29-39. DOI:10.1007/s10343-019-00480-8
Yadav, R., Ror, P., Rathore, P., Kumar, S., Ramakrishna, W. (2021): Bacillus subtilis CP4, Isolated from Native Soil in Combination with Arbuscular Mycorrhizal Fungi Promotes Biofortification, Yield and Metabolite Production in Wheat Under Field Conditions. J Appl Microbiol. 2021 Jul;131(1):339-359. doi: 10.1111/jam.14951. Epub 2020 Dec 9. PMID: 33269514.
Ferrer, R. L., Přikryl, Z., Gryndler, M., Vančaarcura, V. (1989): Natural Occurrence of Vesicular-Arbuscular Fungi in Grape Vine and Apple Trees. Developments in Soil Science, 141–147. doi:10.1016/s0166-2481(08)70208-3.
Cheng, X., Baumgartner, K. (2004): Arbuscular Mycorrhizal Fungi-Mediated Nitrogen Transfer from Vineyard Cover Crops to Grapevines. Biol Fertil Soils 40:406–412. doi:10.1007/s00374-004-0797-4.
Schreiner, R. P., Mihara, K. L. (2009): The Diversity of Arbuscular Mycorrhizal Fungi Amplified from Grapevine Roots (Vitis vinifera L.) in Oregon Vineyards is Seasonally Stable and İnfluenced by Soil and Vine Age. Mycologia, 101(5), 599–611. doi:10.3852/08-169.
Oehl, F., Koch, B. (2018). Diversity of Arbuscular Mycorrhizal Fungi in No-Till and Conventionally Tilled Vineyards. Journal of Applied Botany and Food Quality. 91. 10.5073/JABFQ.2018.091.008.
Bezerra, A., Betancur Agudelo, M., Meyer, E., Kemmelmeier, K., Stürmer, S., & Soares, C., Lovato, P., Silva, L. (2022): Occurrence and Richness of Arbuscular Mycorrizal Fungi in Vineyards with Grapevine Decline and Dieback Symptoms. Ciência Rural. 52. 10.1590/0103-8478cr20210011.
Belew, D., Astatkie, T., Mokashi, M.N., Getachew, Y., Patil, C.P. (2010); Effects of Salinity and Mycorrhizal Inoculation (Glomus fasciculatum) on Growth Responses of Grape Rootstocks (Vitis spp.). J. Enol. Vitic. 31. 10.21548/31-2-1404.
Ramajayam, Devarajan. (2013): Mycorrhization Alleviates Salt Stress in Grape Rootstocks During in vitro Acclimatization. Indian Journal of Horticulture. 70. 26-32. Rillig, M.C. and Mummey, D. L. (2006). Mycorrhizas and Soil Structure. New Phytologist, 171:41-53.
Torres, N., Yu, R., Kurtural, S. K. (2021): Arbuscular Mycrorrhizal Fungi Inoculation and Applied Water Amounts Modulate the Response of Young Grapevines to Mild Water Stress in a Hyper-Arid Season. Front Plant Sci. 2021 Jan 14;11:622209. doi: 10.3389/fpls.2020.622209. PMID: 33519880; PMCID: PMC7840569.
Khalil, H. A. (2013): Influence of Vesicular-Arbuscular Mycorrhizal Fungi (Glomus spp.) on The Response of Grapevines Rootstocks to Salt Stress. Asian J. Crop Sci. 5, 393–404. 10.3923/ajcs.2013.393.404.
Upreti, K. K., Bhatt, R. M., Panneerselvam, P., Varalakshmi, L. R. (2016): Morpho-physiological Responses of Grape Rootstock ‘Dogridge’ to Arbuscular Mycorrhizal Fungi Inoculation Under Salinity Stress. Int J Plant Sci 16:191–209.
Nicolás, E., Maestre-Valero, J. F., Alarcón, J. J., Pedrero, F., Vicente-Sánchez, J., Bernabé, A., et al. (2015): Effectiveness and Persistence of Arbuscular Mycorrhizal Fungi on The Physiology, Nutrient Uptake and Yield of Crimson Seedless Grapevine. J. Agric. Sci. 153 1084–1096. 10.1017/S002185961400080X.
Karagiannidis, N., Nikolaou, N., Ipsilantis, I., Zioziou, E. (2007): Effects of Different N Fertilizers on The Activity of Glomus mosseae and On Grapevine Nutrition and Berry Composition. Mycorrhiza 18 43–50. 10.1007/s00572-007-0153-2.
Nikolaou, N., Angelopoulos, K., Karagiannidis, N. (2003): Effects Of Drought Stress On Mycorrhizal And Non-Mycorrhizal Cabernet Sauvignon Grapevine, Grafted Onto Various Rootstocks. Experimental Agriculture, 39(3), 241-252. doi:10.1017/S001447970300125X.
Petgen, M., Schropp, A., George, E., Romheld, V. (1998): Influence of Different Inoculum Places of The Mycorrhizal Fungus Glomus mosseae on Mycorrhizal Colonization in Grapevine Rootstocks. (Vitis sp.). Vitis., 37: 99–105.
Luciani, E., Frioni, T., Tombesi, S., Farinelli, D., Gardi, T., Ricci, A., Palliotti, A. (2019): Effects of a new arbuscular mycorrhizal fungus (Glomus iranicum) on grapevine development. BIO Web of Conferences, 13, 04018. doi:10.1051/bioconf/20191304018.
Büttenbender, D., de Souza, P. V. D. (2021): Response of Grapevine Rootstocks to İnoculation by Arbuscular Mycorrhizal Fungi.
Camprubí, A., Estaún, V., Nogales, A. et al. (2008): Response of The Grapevine Rootstock Richter 110 to İnoculation with Native and Selected Arbuscular Mycorrhizal Fungi and Growth Performance in A Replant Vineyard. Mycorrhiza 18, 211–216. https://doi.org/10.1007/s00572-008-0168-3.
Schreiner, R. (2007): Effects of Native and Nonnative Arbuscular Mycorrhizal Fungi on Growth and Nutrient Uptake of 'Pinot noir' (Vitis vinifera L.) in Two Soils with Contrasting Levels of Phosphorus. Applied soil ecology, 36, 205-215. doi: 10.1016/j.apsoil.2007.03.002.
Hao, Z., Fayolle, L., van Tuinen, D., Chatagnier, O., Li, X., Gianinazzi, S. (2012): Local and Systemic Mycorrhiza-İnduced Protection Against The Ectoparasitic Nematode Xiphinema index İnvolves Priming of Defence Gene Responses in Grapevine. J. Exp. Bot. 63 3657–3672. 10.1093/jxb/ers046.
Nogales, A., Santos, E. S., Abreu, M. M., Arán, D., Victorino, G., Pereira, H. S., Lopes, C. M., Viegas, W. (2019): Mycorrhizal Inoculation Differentially Affects Grapevine's Performance in Copper Contaminated and Non-contaminated Soils. Frontiers in plant science, 9, 1906. https://doi.org/10.3389/fpls.2018.01906.
Motosugi, H., Yamamoto, Y., Naruo, T., Kitabayashi, H., Ishii, T. (2002): Comparison of The Growth and Leaf Mineral Concentrations Between Three Grapevine Rootstocks and Their Corresponding Tetraploids Inoculated with An Arbuscular Mycorrhizal Fungus Gigaspora margarita. Vitis. 41(1):21–25.
Schellenbaum, L., Berta, G., Ravolanirina, F., Tisserant, B., Gianınazzi, S., Fitter, A. H. (1991): Influence of Endomycorrhizal Infection on Root Morphology in a Micropropagated Woody Plant Species (Vitis vinifera L.). Annals of Botany, 68(2), 135–141. doi:10.1093/oxfordjournals.aob.a088231.
Cetin, S. E., Güven, Z., Uçar M. (2014): The Roles of Arbuscular Mycorrhizal Fungi on Some Growth Parameters and Biochemical Compounds on Some Vitis Rootstock (Vol. 7). Vol. 7. International Journal of Agricultural and Natural Sciences.
Karoglan, M., Radić, T., Anić, M., Andabaka, Ž., Stupić, D., Tomaz, I., Mesić, J., Karažija, T., Petek, M., Lazarević, B., Poljak, M., Osrečak, M. (2021): Mycorrhizal Fungi Enhance Yield and Berry Chemical Composition of in Field Grown “Cabernet Sauvignon” Grapevines (V. vinifera L.). Agriculture. 11(7):615. https://doi.org/10.3390/agriculture11070615.
Vilvert, E., Dalla Costa, M., Cangahuala-Inocente, G. C., Lovato, P. E. (2017): Root Proteomic Analysis of Grapevine Rootstocks Inoculated with Rhizophagus irregularis and Fusarium oxysporum f. sp. herbemontis. Rev. Bras. Cienc. Solo 41 1–14. 10.1590/18069657rbcs20160134.
Aguín, O., Mansilla, J., Vilariño, A., Sainz, M. J. (2004): Effects of Mycorrhizal Inoculation on Root Morphology and Nursery Production of Three Grapevine Rootstocks. American Journal of Enology and Viticulture. 55.
Ambrosini, V. G., Voges, J. G., Canton, L., da Rosa, Couto, R., Ferreira, P. A. A., Comin, J. J., et al. (2015): Effect of Arbuscular Mycorrhizal Fungi on Young Vines in Copper-Contaminated Soil. Braz. J. Microbiol. 46 1045–1052. 10.1590/S1517-838246420140622
Mukerji, K. G., Cinacio, A. (2007): Mycorrhizae In The Integrated Pest And Disease Management. In: Ciancio, A., Mukerji, K.G. (eds) General Concepts in Integrated Pest and Disease Management. Integrated Management of Plants Pests and Diseases, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6061-8_10.
Torres-Barragan, A., Zavaleta-Mejía, E., Gonzalez Chavez C., M., Ferrera-Cerrato, R. (1996): The Use of Arbuscular Mycorrhizae to Control Onion White Rot. Mycorrhiza. 10.1007/s005720050133.
Fiorilli, V., Catoni, M., Francia, D., Cardinale, F., Lanfranco, L. (2011): The Arbuscular Mycorrhızal Symbiosis Reduces Disease Severity In Tomato Plants Infected By Botrytis cinerea. Journal of Plant Pathology, 93(1), 237–242. http://www.jstor.org/stable/41998963.
Nanjundappa, A., Bagyaraj, D. J., Na, A. K., Kumar, M., and Chakdar, H. (2019): Interaction Between Arbuscular Mycorrhizal Fungi and Bacillus spp. in Soil Enhancing Growth of Crop Plants. Fungal Biol. Biotechnol. 6:23. doi: 10.1186/s40694-019-0086-5.
El-Shafeey, E. I., Abd-El-Hadi, M. A., Hagag, E. S., Abu El-Naga, G. S. (2019): Utilization of Organic and Bio Fertilizers Against Root-Knot Nematode (Meloidogyne incognita) Infecting Faba Bean (Vicia faba L.). Bulg. J. Agric. Sci., 25(3): 506–513.
Marx, D. H., Davey, C. B. (1969): The Influence of Ecto-Trophic Mycorrhizal Fungi on The Resistance of Pine Roots to Pathogenic Infections. IV. Resistance of Naturally Occurring Mycorrhizae to Infections by Phytophthora cinnamomi. Phytopathology, 59, 559-565.
Sharma, Y.P., Watpade, S. and Thakur, J.S. (2014): Role of Mycorrhizae: a Component of İntegrated Disease Management Strategies. 44 (1): 12-20.
Cruz, A. F., Ishii, T. (2012): Arbuscular Mycorrhizal Fungal Spores Host Bacteria That Affect Nutrient Biodynamics and Biocontrol of Soil-Borne Plant Pathogens. Biology open, 1(1), 52–57. https://doi.org/10.1242/bio.2011014.
Singh, M., Mishra, M., Srivastava, D. K., Singh, P. K. (2020): Arbuscular Mycorrhiza-Associated Rhizobacteria and Biocontrol of Soilborne Phytopathogens. In S. M. Mirmajlessi, & R. Radhakrishnan (Eds.), Biostimulants in Plant Science. IntechOpen. https://doi.org/10.5772/intechopen.89266.
Vivas, A., Azcon, R., Biro, B., Barea, J.M., and Ruiz Lozano, J.M. (2003). Influence of Bacterial Strains Isolated from Lead-Polluted Soil and Their İnteractions with Arbuscular Mycorrhizae on The Growth of Trifolium pratense L. Under Lead Toxicity. Can. J. Microbiol. 49:577-588.
Artursson, V., Finlay, R. D. and Jansson, J. K. (2006): Interactions Between Arbuscular Mycorrhizal Fungi and Bacteria and Their Potential for Stimulating Plant Growth. Environmental Microbiology, 8: 1-10. https://doi.org/10.1111/j.1462-2920.2005.00942.x.
Moukarzel, R., Ridgway, H.J., Liu, J., Guerin-Laguette, A., Jones, E.E. (2022): AMF Community Diversity Promotes Grapevine Growth Parameters under High Black Foot Disease Pressure. J Fungi (Basel). 8(3):250. doi: 10.3390/jof8030250. PMID: 35330252; PMCID: PMC8950140.
Petit, E., Gubler, W.D. (2006): Influence of Glomus intraradices on Black Foot Disease Caused by Cylindrocarpon macrodidymum on Vitis rupestris Under Controlled Conditions. Plant Dis., 90: 1481–1484.
Nogales, A., Aguirreolea, J., Santa María, E. et al. (2009): Response of Mycorrhizal Grapevine to Armillaria mellea Inoculation: Disease Development and Polyamines. Plant Soil 317, 177. https://doi.org/10.1007/s11104-008-9799-6.
Vilvert E., Dalla Costa M., Cangahuala-Inocente G. C., Lovato P. E. (2017): Root Proteomic Analysis of Grapevine Rootstocks Inoculated with Rhizophagus irregularis and Fusarium oxysporum f. sp. herbemontis. Rev. Bras. Cienc. Solo 41 1–14. 10.1590/18069657rbcs20160134
Hao, Z., van Tuinen, D., Fayolle, L., Chatagnier, O., Li, X., Chen, B., Gianinazzi, S., Gianinazzi-Pearson, V. (2018) Arbuscular Mycorrhiza Affects Grapevine fanleaf virus Transmission by The Nematode Vector Xiphinema index. Appl Soil Ecol 129:107–111.
Waschkies, C., Schropp, A., Marschner, H. (1994): Relations Between Grapevine Replant Disease and Root Colonization of Grapevine (Vitis sp.) by Fluorescent Pseudomonads and Endomycorrhizal Fungi. Plant Soil, 162, 219-227.
Landi, L., Foglia, R., Murolo, S., Romanazzi, G. (2021): The Mycorrizal Status in Vineyards Affected by Esca. J. Fungi. 7, 869. https://doi.org/10.3390/jof7100869.
Coyne, D. L., Sahrawat, K. L., Plowright, R. A. (2004): The İnfluence of Mineral Fertilizer Application and Plant Nutrition on Plant-Parasitic Nematodes in Upland and Lowland Rice in Côte d’Ivoire and Its Implications in Long Term Agricultural Research Trials. Exp. Agric. 40, 245–256. 10.1017/S0014479703001595.
Elsen, A., Gervacio, D., Swennen, R. et al. (2008): AMF-induced Biocontrol Against Plant Parasitic Nematodes in Musa sp.: A Systemic Effect. Mycorrhiza 18, 251–256 https://doi.org/10.1007/s00572-008-0173-6.
Anjos, É. C. T. D., Cavalcante, U. M. T., Gonçalves, D. M. C., Pedrosa, E. M. R., Santos, V. F. D., Maia, L. C. (2010): Interactions Between an Arbuscular Mycorrhizal Fungus (Scutellospora heterogama) and The Root-Knot Nematode (Meloidogyne incognita) on Sweet Passion Fruit (Passiflora alata). Brazilian Archives of Biology and Technology, 53(4), 801-809.
Li H. Y., Yang G. D., Shu H. R., Yang Y. T., Ye B. X., Nishida I., Zheng C. C. (2006): Colonization by The Arbuscular Mycorrhizal Fungus Glomus versiforme İnduces a Defense Response Against The Root-Knot Nematode Meloidogyne incognita in The Grapevine (Vitis amurensis Rupr.), Which İncludes Transcriptional Activation of The Class III Chitinase Gene VCH3. Plant Cell Physiol. 47(1):154-63. doi: 10.1093/pcp/pci231. Epub 2005 Dec 2. PMID: 16326755.
Ingham, R. E. (1988): Interactions Between Nematodes and Vesicular-Arbuscular Mycorrhizae. Agriculture, Ecosystems & Environment, 24(1-3), 169–182. doi:10.1016/0167-8809(88)90064-3.
Francl, L. J. (1993): Interactions of Nematodes with Mycorrhizae and Mycorrhizal Fungi. In Nematode Interactions. Ed. M W Khan. pp 203–216. Chapman and Hall, London.
Lax, P., Becerra, A.G., Soteras, F. et al. (2011): Effect of The Arbuscular Mycorrhizal Fungus Glomus intraradices on The False Root-Knot Nematode Nacobbus aberrans in Tomato Plants. Biol Fertil Soils 47, 591–597. https://doi.org/10.1007/s00374-010-0514-4.
Jaizme-Vega, M.d.C. and Pinochet, J. (1997): Growth Response of Banana to Three Mycorrhizal Fungi in Pratylenchus goodeyi İnfested Soil. Nematropica 27(1):69-76. http://journals.fcla.edu/nematropica/article/view/64183.
Elsen, A., Declerck, S., De Waele, D. (2003): Use of Root Organ Cultures to Investigate the Interaction Between Glomus intraradices and Pratylenchus coffeae. Appl Environ Microbiol 69:4308–4311.
Kassab, A. S., Taha, A. H. Y. (1990): Aspects of The Host-Parasite Relationships of Nematodes and Sweet Potato 1. Population Dynamics and İnteraction of Criconemella spp., Rotylenchulus reniformis, Tylenchorhynchus spp. and Endomycorrhiza. Annals of Agricultural Science, 35, 497–508.
da Silva Campos, M. A., da Silva, F. S. B., Yano-Melo, A. M., de Melo, N. F., & Maia, L. C. (2017): Application of Arbuscular Mycorrhizal Fungi During The Acclimatization of Alpinia purpurata to Induce Tolerance to Meloidogyne arenaria. The Plant Pathology Journal. Korean Society of Plant Pathology. https://doi.org/10.5423/ppj.oa.04.2016.0094
Kesba, H. H., & Al-Sayed, A. A. (2005): Interactions of Three Species of Plant-Parasitic Nematodes with Arbuscular Mycorrhizal Fungus, Glomus macrocarpus, and Their Effect on Grape Biochemistry. Nematology, 7(6), 945-952. doi: https://doi.org/10.1163/156854105776186406.
Atilano, R. A., Menge, J. A., Gundy, S. D. (1981): Interaction Between Meloidogyne arenaria and Glomus fasciculatus in Grape. J Nematol. 13(1):52-7. PMID: 19300722; PMCID: PMC2618053.
Siddiqui, Z. A., Mahmood, I. (1995). Role of Plant Symbionts in Nematode Management: A review. Bioresource Technology, 54(3), 217–226. doi:10.1016/0960-8524(95)00137-9.
Ceustermans A, Van Hemelrijck W, Van Campenhout J, Bylemans D. (2018): Effect of Arbuscular Mycorrhizal Fungi on Pratylenchus penetrans Infestation in Apple Seedlings under Greenhouse Conditions. Pathogens. 7(4):76. https://doi.org/10.3390/pathogens7040076.
Calvet, C., Pinochet, J., Camprubí, A. et al. (1995): Increased Tolerance to The Root-Lesion Nematode Pratylenchus vulnus in Mycorrhizal Micropropagated BA-29 Quince Rootstock. Mycorrhiza 5, 253–258. https://doi.org/10.1007/BF00204958.
Brito, O. D. C., Hernandes, I., Ferreira, J. C. A., Cardoso, M. R., Alberton, O., & Dias-Arieira, C. R. (2018): Association Between Arbuscular Mycorrhizal Fungi and Pratylenchus brachyurus in Maize Crop. Chilean Journal of Agricultural Research, 78(4), 521–527. doi:10.4067/s0718-58392018000400521.
Vaast, P., Caswell-Chen, E., Zasoski, R. (1997): Influences of A Root-Lesion Nematode, Pratylenchus coffeae, and Two Arbuscular Mycorrhizal Fungi, Acaulospora mellea and Glomus clarum on Coffee (Coffea arabica L.). Biol Fertil Soils 26, 130–135. https://doi.org/10.1007/s003740050355.
Veiga, R. S., Jansa, J., Frossard, E., van der Heijden, M. G. (2011): Can Arbuscular Mycorrhizal Fungi Reduce The Growth of Agricultural Weeds?. PloS one, 6(12), e27825. https://doi.org/10.1371/journal.pone.0027825.
Jordan, N., Zhang J., Huerd, S. (2000): Arbuscular-mycorrhizal Fungi: Potential Roles in Weed Management. Weed Research. 40. 397-410. 10.1046/j.1365-3180.2000.00207.x.
Rinaudo, V., Bàrberi, P., Giovannetti, M. et al. (2010). Mycorrhizal Fungi Suppress Aggressive Agricultural Weeds. Plant Soil 333, 7–20. https://doi.org/10.1007/s11104-009-0202-z.
Radic, T., Hančević, K., Matevž, L., Protega, I., Jug-Dujaković, M., Bogdanović, I. (2012): Neighbouring Weeds Influence The Formation of Arbuscular Mycorrhiza in Grapevine. Symbiosis. 56. 10.1007/s13199-012-0165-3.
Taber, R. A., and M. E. Strong, and Trappe, J. M. (1982): Occurrence of Glomus Spores in Weed Seeds in Soil. Mycologia. 74: 515–520.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Türk Bilimsel Derlemeler Dergisi
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.