ROLE OF CARVACROL IN PROLIFERATIVE CELL SIGNALLING AND ISCHEMIC STROKES: A DETAILED REVIEW

Abstract views: 252 / PDF downloads: 126

Authors

Keywords:

Carvacrol, tissue repair, cell signalling pathway, ischemia-reperfusion

Abstract

Plant-based molecules have played important roles in treatment of human diseases as therapeutic agents since ancient times. Carvacrol [2-methyl-5-isopropyl phenol] is among the most studied of the isoprenoid group of bioactive compounds, and has diverse applications in the pharmaceutical, food, biotechnological industries and others. Discovery of its antimicrobial, anticancer, antispasmodic, immunomodulatory, anti-inflammatory, antioxidant and mitogenic effects, has made it a hot topic of numerous research projects. Molecular mechanisms underlying these various effects are still subjects of ongoing researches and existing literatures are quite few on this subject. This review work sought to study the few existing literatures on the carvacrol-cell signalling pathway relationship in cell survival and death, and the emerging future directions for basic and translational research. Carvacrol is known to activate several cell signalling pathways essential to cell survival and death, such as ERK1/2 MAPK signalling, p38 MAPK signalling and JNK MAPK signalling of the MAPK signalling family, PI3K/AKT signalling, IL6/STAT3 signalling, eNOS signalling, etc. Carvacrol exerts different biological actions to influence up-/down-regulation of key cell cycle proteins expressions such as cyclin D1, cyclin B1; CDK4, CDK6, pRb, etc, were either. Mitochondrial-mediated dose-dependent apoptosis and cytoprotection are a major hallmark of mechanism of carvacrol action.

Author Biographies

Mustafa UYANOĞLU, Eskişehir Osmangazi Üniversitesi Biyoloji Bölümü

https://akademik.yok.gov.tr/AkademikArama/view/viewAuthorProject.jsp

Mediha CANBEK, Eskisehir Osmangazi University Biology department

Ayşe ÖZMEN YAYLACI, Hitit Üniversitesi Biyoloji bölümü

https://akademik.yok.gov.tr/AkademikArama/view/viewAuthor.jsp

References

Canbek, M., Uyanoglu, M., Bayramoglu, G., Senturk, H., Erkasap, N, Koken T., Uslu, S., Demirustu, C., Aral E, Husnu Can Baser K., (2008): Effects of carvacrol on defects of ischemia-reperfusion in the rat liver. Phytomedicine. Jun; 15(6-7):447-52

Christianson David,W. (2017): Structural and Chemical Biology of Terpenoid Cyclases. Chemical Reviews 117 (17), 11570-11648.

Sharkey, TD., Yeh, S. (2001): Isoprene emıssıon from plants. Annual Rev Plant Physiol Plant Mol Biol 52: 407-436.

Connolly, JD., Hill, RA. (1992): Dictionary of Terpenoids. New York: Chapman and Hall.

Daum, M., Herrmann, S., Wilkinson, B., Bechthold, A. (2009): Genes and enzymes involved in bacterial isoprenoid biosynthesis. Curr Opin Chem Biol 13(2):180-8.

George, K.W., Alonso-Gutierrez, J., Keasling, J.D., Lee, T.S. (2015): Isoprenoid Drugs, Biofuels, and Chemicals - Artemisinin, Farnesene, and Beyond. In: Schrader J., Bohlmann J. (eds) Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology. Springer, Cham vol 148.

Kiyama, R. (2017): Estrogenic terpenes and terpenoids: Pathways, functions and applications. Eur J Pharmacol 815:405‐415.

Ashrafizadeh ,M., Yaribeygi, H., Atkin, SL., Sahebkar, A. (2019): Effects of newly introduced antidiabetic drugs on autophagy. Diabetes Metab Syndr 13(4):2445-2449.

Quintans, J., Shanmugam, S., Heimfarth, L. (2019): Monoterpenes modulating cytokines‐A review. Food Chem Toxicol 123:233-257.

Jakaria, M., Cho, D-Y., Ezazul Haque, M. (2018):Neuropharmacological potential and delivery prospects of thymoquinone for neurological disorders. Oxid Med Cell Longev 1‐17.

Ashrafizadeh, M., Ahmadi, Z., Mohammadinejad, R., Kaviyani, N., Tavakol, S. (2020): Monoterpenes modulating autophagy: A review study. Basic Clin Pharmacol Toxicol 126: 9– 20.

Mohammedi, Z. (2017): Carvacrol: An Update of Biological Activities and Mechanism of Action". Open Access Journal of Chemistry 1(1):53-62.

Mari, A., Mani, G., Nagabhishek, SN., Balaraman, G., Subramanian, N., Mirza, FB., Sundaram, J., Thiruvengadam, D., (2021). Carvacrol Promotes Cell Cycle Arrest and Apoptosis through PI3K/AKT Signaling Pathway in MCF-7 Breast Cancer Cells. Chin J Integr Med.

Naghdi Badi, H., Abdollahi, M., Mehrafarin, A., Ghorbanpour, M., Tolyat, M., Qaderi, A. (2017): An Overview on Two Valuable Natural and Bioactive Compounds, Thymol and Carvacrol, in Medicinal Plants. J. Med. Plants. 16 (63): 1-32.

Burt, S. (2004): Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol. 94(3):223-53.

Ultee, A., Kets, E. P., & Smid, E. J. (1999): Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Applied and environmental microbiology 65(10), 4606–4610.

Mallanagoula, B. (1995): Effect of N. P. K. and Fym on growth parameters of onion, garlic and coriander. J. Medicinal and Aromatic Plant Science 4: 916 - 918.

Yanishlieva, NV., Marinova, EM., Gordon, MH. (1999): Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem 64:59-66.

Tholl, D. (2006): Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion in Plant Biol 9: 297-304.

Soltanab, YA., Morsybc, AS., Araujo, RC., Elzaiatab, HM., Sallama, SMA., Louvandinib, H., Abdallab, AL. (2011): Carvacrol and eugenol as modifiers of rumen microbial fermentation, and methane production in vitro. Foreign Agricultural Relations (FAR), Egypt pp: 1-11.

Guimarães, AG., Oliveira, GF., Melo, MS., Cavalcanti, SC., Antoniolli, AR., Bonjardim, LR., Silva, FA., Santos, JP., Rocha, RF., Moreira, JC., Araújo, AA., Gelain, DP., Quintans-Júnior, LJ. (2010): Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic Clin Pharmacol Toxicol 107(6):949-57.

Suganthi, R.U., and Manpal, S. (2013): Biological and pharmacological actions of carvacrol and its effects on poultry: an updated review. World J. Pharm. Pharm. Sci 2(5): 3581–3595.

Slamenova, D., Horvathova, E., Sramkova, M., Marsalkova, L. (2007): DNA-protective effects of two components of essential plant oils carvacrol and thymol on mammalian cells cultured in vitro. Neoplasma 54: 108-112.

Jayakumar, S., Madankumar, A., Asokkumar, S., Raghunandhakumar, S., Gokula dhas, K., Kamaraj, S. (2012): Potential preventive effect of carvacrol against diethylnitrosamine-induced hepatocellular carcinoma in rats. Molecular and cellular biochemistry 360(1-2):51-60.

Aristatile, B., Al-Numair, KS., Veeramani, C., Pugalendi, KV. (2009) Effect of carvacrol on hepatic marker enzymes and antioxidant status in D-galactosamine-induced hepatotoxicity in rats. Fundamental & clinical pharmacology 23(6):757-65.

Torii, S., Yamamoto, T., Tsuchiya, Y., Nishida, E. (2006): ERK MAP kinase in G1 cell cycle progression and cancer. Cancer Sci 97:697-702.

Queiroz, EA., Fortes, ZB., da Cunha, MA., Sarilmiser, HK., Dekker, AM., Öner, ET. (2017): Levan promotes antiproliferative and proapoptotic effects in MCF-7 breast cancer cells mediated by oxidative stress. Int J. Biol Macromol 102:565-570.

Fan, K., Li, X., Cao, Y., Qi, H., Li, L., Zhang, Q., Sun, H. (2015): Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs 26(8):813-23.

Dai, W., Sun, C., Huang, S., Zhou, Q. (2016): Carvacrol suppresses proliferation and invasion in human oral squamous cell carcinoma. OncoTargets Ther 9: 2297-2304.

Arunasree, KM. (2010): Anti-proliferative e-ects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine: international journal of phytotherapy and phytopharmacology 17(8-9):581-8.

Mitsiades, CS., Mitsiades, N., Koutsilieris, M. (2004): The Akt pathway: molecular targets for anti-cancer drug development. Curr Cancer Drug Target 4: 235-256.

Vara, JAF., Casado, E., de Castro, J., Cejas, P., Belda-Iniesta, C., González-Barón, M. (2004): PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30(2):193-204.

Widmann, C., Gibson, S., Jarpe, M. B., & Johnson, G. L. (1999): Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiological reviews 79(1), 143–180.

Xia, Z., Dickens, M., Raingeaud, J., Davis, RJ., Greenberg, ME. (1995): Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 24; 270(5240):1326-31.

Hagemann, C., Blank, JL. (2001): The ups and downs of MEK kinase interactions. Cell Signal 13: 863–875.

Simstein, R., Burow, M., Parker, A., Weldon, C., Beckman, B. (2003): Apoptosis, chemoresistance, and breast cancer: insights from the MCF-7 cell model system. Exp Biol Med 28:995–100334.

Yoon, S., Seger, R. (2006): The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24: 21–44.

Junttila, MR., Li, SP., Westermarck, J. (2008): Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J. 22:954–965.

Lee, HJ., Wang, CJ., Kuo, HC., Chou, FP., Jean, LF., Tseng, TH. (2005): Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK. Toxicol Appl Pharmacol 203:124–131.

Gopalakrishnan, A., Xu, CJ., Nair, SS., Chen, C., Hebbar, V., Kong. (2006): ANT Modulation of activator protein-1 (AP-1) and MAPK pathway by flavonoids in human prostate cancer PC3 cells. Arch Pharm Res 29: 633–644.

Chang, HL., Wu, YC., Su, JH., Yeh, YT., Yuan, SSF. (2008): Protoapigenone, a novel flavonoid, induces apoptosis in human prostate cancer cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase 1/2. J Pharmacol Exp Ther 325:841–849.

Yin, QH., Yan, FX., Zu, XY., Wu, YH., Wu, XP., Liao, MC., Deng, SW., Yin, LL., Zhuang, YZ. (2012): Anti-proliferative and pro-apoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. Cytotechnology 64(1):43-51.

Gajewski, T. F., & Thompson, C. B. (1996): Apoptosis meets signal transduction: elimination of a BAD influence. Cell 87(4), 589–592.

Hikim Sinha, AP., Swerdloff, RS. (1999): Hormonal and genetic control of germ cell apoptosis in the testis. Rev Reprod 4(1):38-47.

Kowaltowski, AJ., Cosso, RG., Campos, CB., Fiskum, G. (2002): Effect of Bcl-2 overexpression on mitochondrial structure and function. J Biol Chem 277:42802-42807.

Sharpe, JC., Arnoult, D., Youle, RJ. (2004): Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 1644:107-113.

Gross, A., McDonnell, JM., Korsmeyer, SJ. (1999): BCL-2 family members and the mitochondria in apoptosis. Gene Dev 13: 1899–911.

Zhao, H., Sapolsky, RM., Steinberg, GK. (2006): Phosphoinositide-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol 34: 249–70.

Wang, X., Han, W., Du, X., Zhu, C., Carlsson, Y., Mallard, C.(2010): Neuroprotective effect of Bax-inhibiting peptide on neonatal brain injury. Stroke: J Cereb Circ 41: 2050–5.

Koparal, AT., Zeytinoglu, M. (2003): Effects of Carvacrol on a Human Non-Small Cell Lung Cancer (NSCLC) Cell Line, A549. Cytotechnology 43(1-3):149-15437.

Sharma, LK., Lu, J., Bai, Y. (2009): Mitochondrial respiratory complex I: structure, function and implication in human diseases. Curr Med Chem 16(10):1266-1277.

Monzote, L., Stamberg, W., Staniek, K. , & Gille, L. (2009): Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria. Toxicology and Applied Pharmacology 240, 337–347.

Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, AJ., Robinson, JP. (2003): Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem. 278:8516–8525.

Koopman, W. J., Nijtmans, L. G., Dieteren, C. E., Roestenberg, P., Valsecchi, F., Smeitink, J. A., Willems, P. H. (2010): Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal.12: 1431–1470.

Deshmukh, P., Unni, S., Krishnappa, G. & Padmanabhan, B. (2017): The keap1–nrf2 pathway: promising therapeutic target to counteract ros-mediated damage in cancers and neurodegenerative diseases. Biophys. Rev 9, 41–56.

Ha, K.-N., Chen, Y., Cai, J., & Sternberg, P. (2006): Increased glutathione synthesis through an ARE-Nrf2-dependent pathway by zinc in the RPE: Implication for protection against oxidative stress. Investigative Ophthalmology and Visual Science 47(6), 2709– 2715.

Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M., & Nabeshima, Y.-I. (1997): An Nrf2/small Mafheterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements.

Ma, Q. (2013): Role of Nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology 53(1), 401– 426.

Banik, S., Akter, M., Corpus Bondad, S. E., Saito, T., Hosokawa, T., & Kurasaki, M. (2019): Carvacrol inhibits cadmium toxicity through combating against caspase dependent/independent apoptosis in PC12 cells. Food and Chemical Toxicology 134, 110835. 65.

Arruri, V.K., Gundu, C., Kalvala, A.K., Sherkhane, B., Khatri, D.K., Singh, S.B. (2021): Carvacrol abates NLRP3 inflammasome activation by augmenting Keap1/Nrf-2/p62 directed autophagy and mitochondrial quality control in neuropathic pain. Nutr. Neurosci 1–16. 61.

Picca, A., Mankowski, R.T., Burman, J.L., Donisi, L., Kim, J.-S., Marzetti, E., Leeuwenburgh, C. (2018): Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat. Rev. Cardiol 15, 543–554. 62.

Arkali, G., Aksakal, M., Kaya, ŞÖ. (2021): Protective effects of carvacrol against diabetes-induced reproductive damage in male rats: Modulation of Nrf2/HO-1 signalling pathway and inhibition of Nf-kB-mediated testicular apoptosis and inflammation. Andrologia 53(2):e13899. 66.

Wang, P., Luo, Q., Qiao, H., Ding, H., Cao, Y., Yu, J., Liu, R., Zhang, Q., Zhu, H., Qu, L. (2017): The Neuroprotective effects of Carvacrol on Ethanol-Induced Hippocampal Neurons Impairment via the Antioxidative and Antiapoptotic Pathways. Oxidative Med. Cell. Longev 1–17.

Chenet, AL., Duarte, AR., de Almeida, FJS., Andrade, CMB., de Oliveira, MR. (2019): Carvacrol Depends on Heme Oxygenase-1 (HO-1) to Exert Antioxidant, Anti-inflammatory, and Mitochondria-Related Protection in the Human Neuroblastoma SH-SY5Y Cells Line Exposed to Hydrogen Peroxide. Neurochem Res 44(4):884-896.

Bouchard, MJ., Wang, LH., Schneider, RJ. (2001): Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science 14;294(5550):2376-8.

Rouzaire-Dubois, B., Dubois, J.M. (2004): Calcium-dependent proliferation of NG108-15 neuroblastoma cells. Gen. Physiol. Biophys 23: 231-239.

Horigane, SI., Ozawa, Y., Yamada, H., Takemoto-Kimura, S. (2019): Calcium signalling: a key regulator of neuronal migration. J Biochem 165(5):401-409.

Berridge, M.J., Bootman, M.D. and Lipp, P. (1998): Calcium-A life and death signal. Nature 395: 645-648.

Chan, AS., Pang, H., Yip, EC., Tam, YK., Wong, YH. (2005). Carvacrol and eugenol differentially stimulate intracellular Ca2+ mobilization and mitogen-activated protein kinases in Jurkat T-cells and monocytic THP-1 cells. Planta Med. 71(7):634-9.

Liang, W.Z., Lu, C.H. (2012): Carvacrol-induced [Ca2+]i rise and apoptosis in human glioblastoma cells. Life Sci 90: 703-711.

Liang, W.Z., Chou, C.T., Lu, T., Chi, C.C., Tseng, L.L., Pan, C.C., Lin, K.L., Kuo, C.C. Jan, C.R. (2013): The mechanism of carvacrol evoked [Ca2+]i rises and non-Ca2+-triggered cell death in OC2 human oral cancer cells. Toxicology 303: 152-161.

Gulec, B., Coskun, K., Yigitler, C., Yigit, T., Aydin, A., Oner, K. (2008): Ischemia-Reperfusion Injury in the Liver during Renal Transplantation: Does Perfusion Solution Play Any Role? Transplant. Proc.

Serteser, M., Koken, T., Kahraman, A., Yilmaz, K., Akbulut, G., Dilek, ON. (2002): Changes in hepatic TNF- levels, antioxidant status, and oxidation product after renal ischemia/ reperfusion injury in mice. J. Sur. Res.

Ferdinandy, P., Schulz, R., Baxter, GF. (2007): Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev.

Milano, G., Morel, S., Bonny, C., Samaja, M., von Segesser, LK., Nicod. P., Vassalli, G A. (2007): peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia-reperfusion injury and infarct size in vivo. Am J Physiol Heart Circ Physiology.

Uyanoglu, M., Canbek, M., Aral, E., Husnu Can Baser, K. (2008): Effects of carvacrol upon the liver of rats undergoing partial hepatectomy. Phytomedicine 15(3):226-9.

Ramesh, E., Jayakumar, T., Elanchezhian, R., Sakthivel, M., Geraldine, P., Thomas, P. A. (2009): Green tea catechins alleviate hepatic lipidemic oxidative injury in Wistar rats fed with atherogenic diet. Chem. Biol. Interaction.

Uyanoglu, Mustafa., Canbek, Mediha., Ceyhan, Emre., Senturk, Hakan., Bayramoglu, Gokhan., Gunduz, Ozlem., ÖZEN, Ahmet., Turgak, Ozge. (2011): Preventing organ injury with carvacrol after renal ischemia/reperfusion. Journal of Medicinal Plants Research.

Kadkhodaee, M., Golab, F., Zahmatkesh, M., Ghaznavi, R., Hedayati, M., Arab, HA., Ostad, SN., Soleimani, M. (2009): Effects of different periods of renal ischemia on liver as a remote organ. World J. Gastroenterology.

Flora, K., Hahn, M., Rosen, H., Benner, K. (1998): Milk thistle (Silybum marianum) for the therapy of liver disease. Am. J. Gastroenterol.

Wu, S.D., Xia, F., Lin, X.M., Duan, K.L., Wang, F., Lu, Q.L., Cao, H., Qian, Y.H., Shi, M. (2016): Ginsenoside-rd promotes neurite outgrowth of pc12 cells through mapk/erk and pi3k/akt-dependent pathways. J. Int. J. Mol. Sci.

Ogborne, RM., Rushworth, SA., O'Connell, MA. (2005): Alpha-lipoic acid-induced heme oxygenase-1 expression is mediated by nuclear factor erythroid 2-related factor 2 and p38 mitogen-activated protein kinase in human monocytic cells. Arterioscler Thromb Vasc Biol.

Bueno, O.F., De Windt, L.J., Tymitz, K.M., Witt, S.A., Kimball, T.R., Klevitsky, R., Hewett, T.E., Jones, S.P., Lefer, D.J., Peng, C.F., Kitsis, R.N., Molkentin, J.D. (2000): The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. J. Embo. J.

Chen, Y., Ba, L., Huang, W., Liu, Y., Pan, H., Mingyao, E., Shi, P., Wang, Y., Li, S., Qi, H., Sun, H., Cao, Y. (2017): Role of carvacrol in cardioprotection against myocardial ischemia/reperfusion injury in rats through activation of MAPK/ERK and Akt/eNOS signalling pathways. Eur J Pharmacol.

Gao, F., Gao, E., Yue, TL., Ohlstein, EH., Lopez, BL., Christopher, TA., Ma, XL. (2002): Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation.

Leon, SP., Zhu, J., Black, PM. (1994): Genetic aberrations in human brain tumours. Neurosurgery.

Aarts, M., Iihara, K., Wei, WL., Xiong, ZG., Arundine, M., Cerwinski, W. (2003): A key role for TRPM7 channels in anoxic neuronal death. Cell.

Jiang, H., Tian, SL., Zeng, Y., Li, LL., Shi, J. (2008): TrkA pathway(s) is involved in regulation of TRPM7 expression in hippocampal neurons subjected to ischemic-reperfusion and oxygen-glucose deprivation. Brain Res Bull.

Chen, W., Xu, B., Xiao, A. (2015): TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Mol Brain 8, 11.

Xiong, T., Tang, J., Zhao, J., Chen, H., Zhao, F., Li, J. (2012): Involvement of the Akt/GSK-3beta/CRMP-2 pathway in axonal injury after hypoxic-ischemic brain damage in neonatal rat. Neuroscience.

Landa, P., Kokoska, L., Pribylova, M., Vanek, T., Marsik, P. (2009): In vitro anti-inflammatory activity of carvacrol: Inhibitory effect on COX-2 catalysed prostaglandin E(2) biosynthesis. Arch Pharm Res.

Lima Mda, S., Quintans-Junior, LJ., de Santana, WA., Martins Kaneto, C., Pereira Soares, MB., Villarreal, CF. (2013): Anti-inflammatory effects of carvacrol: evidence for a key role of interleukin-10. Eur J Pharmacol .

Kara, M., Uslu, S., Demirci, F., Temel, HE., Baydemir, C. (2015): Supplemental Carvacrol Can Reduce the Severity of Inflammation by Influencing the Production of Mediators of Inflammation. Inflammation.

Ozen, BD., Uyanoglu, M. (2018): Effect of carvacrol on IL-6/STAT3 pathway after partial hepatectomy in rat liver. Bratisl Lek Listy.

Bhakkiyalakshmi, E., Suganya, N., Sireesh, D., Krishnamurthi, K., Saravana Devi, S., Rajaguru, P., Ramkumar, KM. (2016): Carvacrol induces mitochondria-mediated apoptosis in HL-60 promyelocytic and Jurkat T lymphoma cells. Eur J Pharmacol.

Lim, W., Ham, J., Bazer, FW., Song, G. (2019): Carvacrol induces mitochondria-mediated apoptosis via disruption of calcium homeostasis in human choriocarcinoma cells. J Cell Physiol.

Downloads

Published

2022-12-09

How to Cite

UYANOĞLU, M., CANBEK, M., ABDULLAH, M. F., HAMİD, N., & ÖZMEN YAYLACI, A. (2022). ROLE OF CARVACROL IN PROLIFERATIVE CELL SIGNALLING AND ISCHEMIC STROKES: A DETAILED REVIEW. Türk Bilimsel Derlemeler Dergisi, 15(2), 45–62. Retrieved from https://derleme.gen.tr/index.php/derleme/article/view/415

Issue

Section

Articles