EVOLUTION OF ANTIBIOTIC RESISTANCE IN BACTERIAL GENOMES:

A COMPREHENSIVE REVIEW

Abstract views: 392 / PDF downloads: 154

Authors

  • Jaya Ashwin D S University of Mysore
  • Shamanth showri N R Vidyavardhaka College of Engineering
  • Divya C D Vidyavardhaka College of Engineering

Keywords:

Antibiotic resistance, Genomics, Evolution, Resistance mechanisms, Multi-drug resistance (MDR)

Abstract

The persistent emergence of antibiotic resistance in bacterial populations poses a formidable challenge to global healthcare systems. Understanding the mechanisms and evolutionary dynamics underlying this phenomenon is of utmost importance. This study comprehensively explores the complex interplay between genomics and evolution within the context of antibiotic resistance in bacteria. It delves into the mechanisms by which bacteria develop resistance to antibiotics, including mutation and horizontal gene transfer, and highlights the pivotal role of natural selection and selective pressure in shaping genomic adaptations. Through the lens of genomics, we dissect case studies of specific bacterial species and strains that have evolved resistance, scrutinizing the genomic changes that underpin their survival. Long-term evolutionary trends and the genomic basis of resistance mechanisms are also examined, offering critical insights into the adaptive strategies employed by bacteria. Furthermore, the review addresses the challenges inherent in studying antibiotic resistance evolution and underscores the necessity for innovative research approaches. By bridging the domains of genomics, evolutionary biology, and disease ecology, this study contributes to a deeper understanding of the ongoing battle against antibiotic-resistant pathogens and provides a foundation for future research endeavours.

References

Aminov, R. (2017). History of antimicrobial drug discovery: Major classes and health impact. Biochemical pharmacology, 133, 4-19.

Cook, M. A., & Wright, G. D. (2022). The past, present, and future of antibiotics. Science Translational Medicine, 14(657), eabo7793.

Coates, A. R. M., & Hu, Y. (2007). Novel approaches to developing new antibiotics for bacterial infections. British journal of pharmacology, 152(8), 1147-1154.

Keeney, K. M., Yurist-Doutsch, S., Arrieta, M. C., & Finlay, B. B. (2014). Effects of antibiotics on human microbiota and subsequent disease. Annual review of microbiology, 68, 217-235.

Anesi, J. A., Blumberg, E. A., & Abbo, L. M. (2018). Perioperative antibiotic prophylaxis to prevent surgical site infections in solid organ transplantation. Transplantation, 102(1), 21-34.

Adamu, B., Abdu, A., Abba, A. A., Borodo, M. M., & Tleyjeh, I. M. (2014). Antibiotic prophylaxis for preventing post solid organ transplant tuberculosis. Cochrane Database of Systematic Reviews, (3).

Bhattacharya, B., & Mukherjee, S. (2015). Cancer therapy using antibiotics. Journal of Cancer Therapy, 6(10), 849.

Pestell, R., & Rizvanov, A. A. (2015). Antibiotics for cancer therapy.

Booser, D. J., & Hortobagyi, G. N. (1994). Anthracycline antibiotics in cancer therapy: focus on drug resistance. Drugs, 47, 223-258.

Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., ... & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection and drug resistance, 1645-1658.

Alos, J. I. (2014). Antibiotic resistance: A global crisis. Enfermedades infecciosas y microbiologia clinica, 33(10), 692-699.

Mobarki, N., Almerabi, B., & Hattan, A. (2019). Antibiotic resistance crisis. Int. J. Med. Dev. Ctries, 40(4), 561-564.

Andersson, D. I., & Hughes, D. (2011). Persistence of antibiotic resistance in bacterial populations. FEMS microbiology reviews, 35(5), 901-911.

Varela, M. F., Stephen, J., Lekshmi, M., Ojha, M., Wenzel, N., Sanford, L. M., ... & Kumar, S. H. (2021). Bacterial resistance to antimicrobial agents. Antibiotics, 10(5), 593.

Overton, K., Fortané, N., Broom, A., Raymond, S., Gradmann, C., Orubu, E. S. F., ... & Kirchhelle, C. (2021). Waves of attention: patterns and themes of international antimicrobial resistance reports, 1945–2020. BMJ global health, 6(11), e006909.

Lushniak, B. D. (2014). Antibiotic resistance: a public health crisis. Public Health Reports, 129(4), 314-316.

Friedman, N. D., Temkin, E., & Carmeli, Y. (2016). The negative impact of antibiotic resistance. Clinical Microbiology and Infection, 22(5), 416-422.

Hofmeyr, G. J., Smaill, F. M., & Cochrane Pregnancy and Childbirth Group. (1996). Antibiotic prophylaxis for cesarean section. Cochrane Database of systematic reviews, 2009(4).

Hu, A., Li, J., Vacek, J., Bouchard, M., Ingram, M. C., McMahon, M., ... & Goldstein, S. (2022). Antibiotic resistance is common in the cultures of intraabdominal abscess drainage after appendectomy. Journal of pediatric surgery, 57(9), 102-106.

Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology advances, 37(1), 177-192.

Alanis, A. J. (2005). Resistance to antibiotics: are we in the post-antibiotic era?. Archives of medical research, 36(6), 697-705.

Kåhrström, C. T. (2013). Entering a post-antibiotic era?. Nature Reviews Microbiology, 11(3), 146-146.

Reardon, S. (2014). WHO warns against ‘post-antibiotic’era. Nature, 15, 135-138.

Cars, O., Chandy, S. J., Mpundu, M., Peralta, A. Q., Zorzet, A., & So, A. D. (2021). Resetting the agenda for antibiotic resistance through a health systems perspective. The Lancet Global Health, 9(7), e1022-e1027.

Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and therapeutics, 40(4), 277.

Gandra, S., Barter, D. M., & Laxminarayan, R. (2014). Economic burden of antibiotic resistance: how much do we really know?. Clinical microbiology and infection, 20(10), 973-980.

Lee, S., Fan, P., Liu, T., Yang, A., Boughton, R. K., Pepin, K. M., ... & Jeong, K. C. (2022). Transmission of antibiotic resistance at the wildlife-livestock interface. Communications Biology, 5(1), 585.

Dolejska, M. (2020). Antibiotic-resistant bacteria in wildlife. Antibiotic Resistance in the Environment: A Worldwide Overview, 19-70.

Ma, Z., Lee, S., & Jeong, K. C. (2019). Mitigating antibiotic resistance at the livestock-environment interface: a review.

Van, T. T. H., Moutafis, G., Tran, L. T., & Coloe, P. J. (2007). Antibiotic resistance in food-borne bacterial contaminants in Vietnam. Applied and environmental microbiology, 73(24), 7906-7911.

Witte, W. (1998). Medical consequences of antibiotic use in agriculture. Science, 279(5353), 996-997.

Teuber, M. (2001). Veterinary use and antibiotic resistance. Current opinion in microbiology, 4(5), 493-499.

Jit, M., Ng, D. H. L., Luangasanatip, N., Sandmann, F., Atkins, K. E., Robotham, J. V., & Pouwels, K. B. (2020). Quantifying the economic cost of antibiotic resistance and the impact of related interventions: rapid methodological review, conceptual framework and recommendations for future studies. BMC medicine, 18(1), 1-14.

Charles, P. G., & Grayson, M. L. (2004). The dearth of new antibiotic development: why we should be worried and what we can do about it. Medical Journal of Australia, 181(10), 549-553.

Gillings, M. R., Paulsen, I. T., & Tetu, S. G. (2017). Genomics and the evolution of antibiotic resistance. Annals of the New York Academy of Sciences, 1388(1), 92-107.

Witte, W. (2000). Selective pressure by antibiotic use in livestock. International journal of antimicrobial agents, 16, 19-24.

Davies, J. (1996). Origins and evolution of antibiotic resistance. Microbiología (Madrid, Spain), 12(1), 9-16.

Ibargüen-Mondragón, E., Mosquera, S., Cerón, M., Burbano-Rosero, E. M., Hidalgo-Bonilla, S. P., Esteva, L., & Romero-Leitón, J. P. (2014). Mathematical modeling on bacterial resistance to multiple antibiotics caused by spontaneous mutations. Biosystems, 117, 60-67.

Maquat, L. E. (2001). The power of point mutations. Nature genetics, 27(1), 5-6.

Negishi, T., & Ohya, Y. (2010). The cell wall integrity checkpoint: coordination between cell wall synthesis and the cell cycle. Yeast, 27(8), 513-519.

Palomino, J. C., & Martin, A. (2014). Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics, 3(3), 317-340.

Amaral, L., Martins, M., & Viveiros, M. (2007). Enhanced killing of intracellular multidrug-resistant Mycobacterium tuberculosis by compounds that affect the activity of efflux pumps. Journal of antimicrobial chemotherapy, 59(6), 1237-1246.

Goñi-Moreno, A., Amos, M., & de la Cruz, F. (2013). Multicellular computing using conjugation for wiring. PLoS One, 8(6), e65986.

Soucy, S. M., Huang, J., & Gogarten, J. P. (2015). Horizontal gene transfer: building the web of life. Nature Reviews Genetics, 16(8), 472-482.

De la Cruz, F., & Davies, J. (2000). Horizontal gene transfer and the origin of species: lessons from bacteria. Trends in microbiology, 8(3), 128-133.

Balcázar, J. L. (2018). How do bacteriophages promote antibiotic resistance in the environment?. Clinical Microbiology and Infection, 24(5), 447-449.

Sandanayaka, V. P., & Prashad, A. S. (2002). Resistance to β-lactam antibiotics: structure and mechanism based design of β-lactamase inhibitors. Current medicinal chemistry, 9(12), 1145-1165.

Pagès, J. M., James, C. E., & Winterhalter, M. (2008). The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nature Reviews Microbiology, 6(12), 893-903.

Pires, D. P., Melo, L. D., Boas, D. V., Sillankorva, S., & Azeredo, J. (2017). Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Current opinion in microbiology, 39, 48-56.

Martins, P. M., Merfa, M. V., Takita, M. A., & De Souza, A. A. (2018). Persistence in phytopathogenic bacteria: do we know enough?. Frontiers in microbiology, 9, 1099.

Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and molecular biology reviews, 74(3), 417-433.

Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology, 8(6), 423-435.

Scheel, D. (1998). Resistance response physiology and signal transduction. Current opinion in plant biology, 1(4), 305-310.

Tello, A., Austin, B., & Telfer, T. C. (2012). Selective pressure of antibiotic pollution on bacteria of importance to public health. Environmental health perspectives, 120(8), 1100-1106.

Andersson, D. I., & Hughes, D. (2012). Evolution of antibiotic resistance at non-lethal drug concentrations. Drug resistance updates, 15(3), 162-172.

Punina, N. V., Makridakis, N. M., Remnev, M. A., & Topunov, A. F. (2015). Whole-genome sequencing targets drug-resistant bacterial infections. Human genomics, 9, 1-20.

Hopkins, A. L., & Groom, C. R. (2002). The druggable genome. Nature reviews Drug discovery, 1(9), 727-730.

Kapur, V., Li, L. L., Iordanescu, S., Hamrick, M. R., Wanger, A., Kreiswirth, B. N., & Musser, J. M. (1994). Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. Journal of clinical microbiology, 32(4), 1095-1098.

Gillings, M. R., Paulsen, I. T., & Tetu, S. G. (2017). Genomics and the evolution of antibiotic resistance. Annals of the New York Academy of Sciences, 1388(1), 92-107.

Su, M., Satola, S. W., & Read, T. D. (2019). Genome-based prediction of bacterial antibiotic resistance. Journal of clinical microbiology, 57(3), 10-1128.

Ghanem, G., Hachem, R., Jiang, Y., Chemaly, R. F., & Raad, I. (2007). Outcomes for and risk factors associated with vancomycin-resistant Enterococcus faecalis and vancomycin-resistant Enterococcus faecium bacteremia in cancer patients. Infection Control & Hospital Epidemiology, 28(9), 1054-1059.

Krawczyk, B., Wityk, P., Gałęcka, M., & Michalik, M. (2021). The many faces of Enterococcus spp.—commensal, probiotic and opportunistic pathogen. Microorganisms, 9(9), 1900.

McManus, M. C. (1997). Mechanisms of bacterial resistance to antimicrobial agents. American Journal of Health-System Pharmacy, 54(12), 1420-1433.

Pfeltz, R. F., & Wilkinson, B. J. (2004). The escalating challenge of vancomycin resistance in Staphylococcus aureus. Current Drug Targets-Infectious Disorders, 4(4), 273-294.

Mühlberg, E., Umstätter, F., Kleist, C., Domhan, C., Mier, W., & Uhl, P. (2020). Renaissance of vancomycin: Approaches for breaking antibiotic resistance in multidrug-resistant bacteria. Canadian journal of microbiology, 66(1), 11-16.

Rice, L. B. (2006). Antimicrobial resistance in gram-positive bacteria. American journal of infection control, 34(5), S11-S19.

Friedman, N. D., Temkin, E., & Carmeli, Y. (2016). The negative impact of antibiotic resistance. Clinical Microbiology and Infection, 22(5), 416-422.

Kollef, M. H. (2001). Optimizing antibiotic therapy in the intensive care unit setting. Critical care, 5, 1-7.

Ang, J. Y., Ezike, E., & Asmar, B. I. (2004). Antibacterial resistance. The Indian Journal of Pediatrics, 71, 229-239.

Muto, C. A., Jernigan, J. A., Ostrowsky, B. E., Richet, H. M., Jarvis, W. R., Boyce, J. M., & Farr, B. M. (2003). SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infection Control & Hospital Epidemiology, 24(5), 362-386.

Hall, A. D., Steed, M. E., Arias, C. A., Murray, B. E., & Rybak, M. J. (2012). Evaluation of standard-and high-dose daptomycin versus linezolid against vancomycin-resistant Enterococcus isolates in an in vitro pharmacokinetic/pharmacodynamic model with simulated endocardial vegetations. Antimicrobial agents and chemotherapy, 56(6), 3174-3180.

Gopal Rao, G. (1998). Risk factors for the spread of antibiotic-resistant bacteria. Drugs, 55, 323-330.

Kang, H. K., & Park, Y. (2015). Glycopeptide antibiotics: Structure and mechanisms of action. Journal of Bacteriology and Virology, 45(2), 67-78.

Heuer, H., & Smalla, K. (2007). Horizontal gene transfer between bacteria. Environmental biosafety research, 6(1-2), 3-13.

Lambert, P. A. (2005). Bacterial resistance to antibiotics: modified target sites. Advanced drug delivery reviews, 57(10), 1471-1485.

Harkins, C. P., Pichon, B., Doumith, M., Parkhill, J., Westh, H., Tomasz, A., ... & Holden, M. T. (2017). Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome biology, 18(1), 1-11.

Chambers, H. F. (1997). Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clinical microbiology reviews, 10(4), 781-791.

Khorvash, F., Mostafavizadeh, K., & Mobasherizadeh, S. (2008). Frequency of mecA gene and borderline oxacillin resistant Staphylococcus aureus in nosocomial acquired methicillin resistance Staphylococcus aureus infections. Pak J Biol Sci, 11(9), 1282-85.

Millar, B. C., Loughrey, A., Elborn, J. S., & Moore, J. E. (2007). Proposed definitions of community-associated meticillin-resistant Staphylococcus aureus (CA-MRSA). Journal of Hospital Infection, 67(2), 109-113.

Batabyal, B., Kundu, G. K., & Biswas, S. (2012). Methicillin-resistant Staphylococcus aureus: A brief review. International research journal of biological sciences, 1(7), 65-71.

Li, B., & Webster, T. J. (2018). Bacteria antibiotic resistance: New challenges and opportunities for implant‐associated orthopedic infections. Journal of Orthopaedic Research®, 36(1), 22-32.

Wu, S. W., De Lencastre, H., & Tomasz, A. (2001). Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. Journal of bacteriology, 183(8), 2417-2424.

Sarhan, S. R., Hashim, H. O., & Al-Shuhaib, M. B. S. (2019). The Gly152Val mutation possibly confers resistance to beta-lactam antibiotics in ovine Staphylococcus aureus isolates. Open Veterinary Journal, 9(4), 339-348.

Barlow, M. (2009). What antimicrobial resistance has taught us about horizontal gene transfer. Horizontal Gene Transfer: Genomes in Flux, 397-411.

Müller, B., Borrell, S., Rose, G., & Gagneux, S. (2013). The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends in Genetics, 29(3), 160-169.

Rattan, A., Kalia, A., & Ahmad, N. (1998). Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerging infectious diseases, 4(2), 195..

Koch, A., Mizrahi, V., & Warner, D. F. (2014). The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin?. Emerging microbes & infections, 3(1), 1-11.

Seung, K. J., Keshavjee, S., & Rich, M. L. (2015). Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harbor perspectives in medicine, 5(9).

Podewils, L. J., Gler, M. T. S., Quelapio, M. I., & Chen, M. P. (2013). Patterns of treatment interruption among patients with multidrug-resistant TB (MDR TB) and association with interim and final treatment outcomes. PLoS One, 8(7), e70064.

Lönnroth, K., Migliori, G. B., Abubakar, I., D'Ambrosio, L., De Vries, G., Diel, R., ... & Raviglione, M. C. (2015). Towards tuberculosis elimination: an action framework for low-incidence countries. European Respiratory Journal, 45(4), 928-952.

Isakova, J., Sovkhozova, N., Vinnikov, D., Goncharova, Z., Talaibekova, E., Aldasheva, N., & Aldashev, A. (2018). Mutations of rpoB, katG, inhA and ahp genes in rifampicin and isoniazid-resistant Mycobacterium tuberculosis in Kyrgyz Republic. BMC microbiology, 18(1), 1-8.

Louw, G. E., Warren, R. M., Gey van Pittius, N. C., McEvoy, C. R. E., Van Helden, P. D., & Victor, T. C. (2009). A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrobial agents and chemotherapy, 53(8), 3181-3189.

Somoskovi, A., Parsons, L. M., & Salfinger, M. (2001). The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respiratory research, 2, 1-5.

Everett, M., Sprynski, N., Coelho, A., Castandet, J., Bayet, M., Bougnon, J., ... & Lemonnier, M. (2018). Discovery of a novel metallo-β-lactamase inhibitor that potentiates meropenem activity against carbapenem-resistant Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 62(5), 10-1128.

Grundmann, H., Livermore, D. M., Giske, C. G., Canton, R., Rossolini, G. M., Campos, J., ... & the CNSE Working Group, C. (2010). Carbapenem-non-susceptible Enterobacteriaceae in Europe: conclusions from a meeting of national experts. Eurosurveillance, 15(46).

De Angelis, G., Del Giacomo, P., Posteraro, B., Sanguinetti, M., & Tumbarello, M. (2020). Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in Enterobacteriaceae. International journal of molecular sciences, 21(14), 5090.

De Angelis, G., Del Giacomo, P., Posteraro, B., Sanguinetti, M., & Tumbarello, M. (2020). Molecular mechanisms, epidemiology, and clinical importance of β-lactam resistance in Enterobacteriaceae. International journal of molecular sciences, 21(14), 5090.

Friedman, N. D., Temkin, E., & Carmeli, Y. (2016). The negative impact of antibiotic resistance. Clinical Microbiology and Infection, 22(5), 416-422.

Hansen, G. T. (2021). Continuous evolution: perspective on the epidemiology of carbapenemase resistance among Enterobacterales and other Gram-negative bacteria. Infectious diseases and therapy, 10, 75-92.

Nordmann, P., Dortet, L., & Poirel, L. (2012). Carbapenem resistance in Enterobacteriaceae: here is the storm!. Trends in molecular medicine, 18(5), 263-272.

Obolski, U., Stein, G. Y., & Hadany, L. (2015). Antibiotic restriction might facilitate the emergence of multi-drug resistance. PLoS computational biology, 11(6), e1004340.

Rahman, S., Kesselheim, A. S., & Hollis, A. (2023). Persistence of resistance: A panel data analysis of the effect of antibiotic usage on the prevalence of resistance. The Journal of Antibiotics, 76(5), 270-278.

Vanaerschot, M., Huijben, S., Van den Broeck, F., & Dujardin, J. C. (2014). Drug resistance in vectorborne parasites: multiple actors and scenarios for an evolutionary arms race. FEMS microbiology reviews, 38(1), 41-55.

Lorusso, A. B., Carrara, J. A., Barroso, C. D. N., Tuon, F. F., & Faoro, H. (2022). Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 23(24), 15779.

Burch, T. R., Newton, R. J., Kimbell, L. K., LaMartina, E. L., O'Malley, K., Thomson, S. M., ... & McNamara, P. J. (2022). Targeting current and future threats: recent methodological trends in environmental antimicrobial resistance research and their relationships to risk assessment. Environmental Science: Water Research & Technology, 8(9), 1787-1802.

Tagoe, D. N. A., & Attah, C. (2010). A Study of Antibiotic Use and Abuse in Ghana: a case study of the Cape Coast Metropolis. The Internet Journal of Health, 11(2), 1-5.

Robinson, T. P., Wertheim, H. F., Kakkar, M., Kariuki, S., Bu, D., & Price, L. B. (2016). Animal production and antimicrobial resistance in the clinic. The Lancet, 387(10014), e1-e3.

Pál, C., Papp, B., & Lázár, V. (2015). Collateral sensitivity of antibiotic-resistant microbes. Trends in microbiology, 23(7), 401-407.

Lehtinen, S., Blanquart, F., Lipsitch, M., Fraser, C., & with the Maela Pneumococcal Collaboration. (2019). On the evolutionary ecology of multidrug resistance in bacteria. PLoS pathogens, 15(5), e1007763.

McAdams, H. H., Srinivasan, B., & Arkin, A. P. (2004). The evolution of genetic regulatory systems in bacteria. Nature Reviews Genetics, 5(3), 169-178.

Finley, R. L., Collignon, P., Larsson, D. J., McEwen, S. A., Li, X. Z., Gaze, W. H., ... & Topp, E. (2013). The scourge of antibiotic resistance: the important role of the environment. Clinical infectious diseases, 57(5), 704-710.

Mariam, S. H., Werngren, J., Aronsson, J., Hoffner, S., & Andersson, D. I. (2011). Dynamics of antibiotic resistant Mycobacterium tuberculosis during long-term infection and antibiotic treatment. PloS one, 6(6), e21147.

Sun, D., Jeannot, K., Xiao, Y., & Knapp, C. W. (2019). Horizontal gene transfer mediated bacterial antibiotic resistance. Frontiers in microbiology, 10, 1933.

Baquero, F., & Blázquez, J. (1997). Evolution of antibiotic resistance. Trends in ecology & evolution, 12(12), 482-487.

Moradigaravand, D., Palm, M., Farewell, A., Mustonen, V., Warringer, J., & Parts, L. (2018). Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLoS computational biology, 14(12), e1006258.

Parsonage, B., Hagglund, P. K., Keogh, L., Wheelhouse, N., Brown, R. E., & Dancer, S. J. (2017). Control of antimicrobial resistance requires an ethical approach. Frontiers in microbiology, 8, 2124.

Gaynes, R. (1995). Surveillance of antibiotic resistance: learning to live with bias. Infection Control & Hospital Epidemiology, 16(11), 623-626.

Silver, L. L., & Bostian, K. A. (1993). Discovery and development of new antibiotics: the problem of antibiotic resistance. Antimicrobial agents and chemotherapy, 37(3), 377-383.

Merker, M., Tueffers, L., Vallier, M., Groth, E. E., Sonnenkalb, L., Unterweger, D., ... & Schulenburg, H. (2020). Evolutionary approaches to combat antibiotic resistance: opportunities and challenges for precision medicine. Frontiers in Immunology, 11, 568485.

Tamma, P. D., & Cosgrove, S. E. (2011). Antimicrobial stewardship. Infectious Disease Clinics, 25(1), 245-260.

Petchiappan, A., & Chatterji, D. (2017). Antibiotic resistance: current perspectives. ACS omega, 2(10), 7400-7409.

Dhanda, G., Acharya, Y., & Haldar, J. (2023). Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance. ACS omega, 8(12), 10757-10783.

World Health Organization. (2015). Antibiotic resistance: multi-country public awareness survey.

Downloads

Published

2023-12-26

How to Cite

Jaya Ashwin D S, Shamanth showri N R, & Divya C D. (2023). EVOLUTION OF ANTIBIOTIC RESISTANCE IN BACTERIAL GENOMES:: A COMPREHENSIVE REVIEW. Türk Bilimsel Derlemeler Dergisi, 16(2), 58–77. Retrieved from https://derleme.gen.tr/index.php/derleme/article/view/461

Issue

Section

Articles