Abstract views: 56 / PDF downloads: 45


  • Yeliz Öğret Phd. Candidate
  • Melek Öztürk Sezgin


Neutrophils, Neutrophil Extracellular Traps [NET], immune system, inflamation, cancer


Neutrophils are innate immune system phagocytes that play a central role in the immune defense. The effects of neutrophils on the immune system and their effects in terms of clearance of pathogens and in terms of the role in disease pathology have advanced rapidly in recent studies. Net-like chromatin structures, known as neutrophilic extracellular traps [NETs], have caused increased interest in neutrophil biology. Identifying the molecules that modulate the release of NETs will help us understand the roles of NETs in inflammation, autoimmune diseases, and cancer, as well as in providing protection for the immune system.




Mortaz E, Alipoor SD, Adcock IA, Mumby S, Koenderman L (2018): Update on Neutrophil Function in Severe Inflammation. Immunol., 9:2171.

Takei H, Araki A, Watanabe H, Ichinose A, Sendo F (1996): Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis, J Leukoc Biol, 59(2):229-40.

Rosales C (2018): Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front. Physiol., 9:113.

Khajah M (2018): Neutrophils. In: Rosales C, Uribe-Querol E eds. Neutrophil Activation by Antibody Receptors. E book, 1-21.

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. (2004): Science, 303(5663):1532-5.

Honda M, Kubes P. Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nat Rev Gastroenterol Hepatol. 2018;15(4):206-21.

Rai G. (eds): Netosis Immunity, Pathogenesis and Therapeutics Chapter 1 - Neutrophil extracellular trap formation: an introduction. 2019:1-21.

Yan G, Elbadawi M, Efferth T. Multiple cell death modalities and their key features. World Academy of Sciences Journal. 2020;40:39-48.

Li T, Zhang Z, Li X, Dong G, Zhang M, Xu Z, Yang J. Neutrophil Extracellular Traps: Signaling Properties and Disease Relevance. Mediators Inflamm. 2020 ;2020:9254087.

Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231-41.

Vorobjeva N.V, Chernyak B.V. NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochemistry (Moscow) 2020;85(10):1178-90.

Thierry AR, and Roch B. Neutrophil Extracellular Traps and By-Products Play a Key Role in COVID-19: Pathogenesis, Risk Factors, and Therapy. J. Clin. Med. 2020;9(9):2942.

Claushuis TAM, Van der Donk LEH, Luitse AL, van Veen HA, Van der Wel NN, Van Vught LA, Roelofs JJTH, de Boer OJ, Lankelma JM, Boon L, de Vos AF, van 't Veer C, van der Poll T. Role of Peptidylarginine Deiminase 4 in Neutrophil Extracellular Trap Formation and Host Defense during Klebsiella pneumoniae–Induced Pneumonia-Derived Sepsis. J Immunol. 2018;201(4):1241-52.

Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207(9):1853-62.

Neeli I, Khan SN, Radic M. Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol. 2008;180(3):1895-902.

Thiam HR, Wong SL, Qiu R, Kittisopikul M, Vahabikashi A, Goldman AE, Goldman RD, Wagner DD, Waterman CM. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc Natl Acad Sci U S A. 2020;117(13):7326-37.

Almyroudis NG, Grimm MJ, Davidson BA, Röhm M, Urban CF, Segal BH. NETosis and NADPH oxidase: at the intersection of host defense, inflammation, and injury. Front Immunol. 2013;4:45.

Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A. 2010;107(21):9813-8.

Pinegin B, Vorobjeva N, Pinegin V. Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun Rev. 2015;14(7):633-40.

Darrah E, Andrade F. NETs: the missing link between cell death and systemic autoimmune diseases? Front Immunol. 2013;3:428.

Schreiber A, Rousselle A, Becker JU, von Mässenhausen A, Linkermann A, Kettritz R. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc Natl Acad Sci U S A. 2017;114(45):9618-25.

Söderberg D, Segelmark M. Neutrophil Extracellular Traps in ANCA-Associated Vasculitis. Front Immunol. 2016;7:256.

Tomasson G, Grayson PC, Mahr AD, Lavalley M, Merkel PA. Value of ANCA measurements during remission to predict a relapse of ANCA-associated vasculitis – a meta-analysis. Rheumatology (Oxford). 2012;51(1):100-9.

Salemme R, Peralta LN, Meka SH, Pushpanathan N, Alexander JJ. The Role of NETosis in Systemic Lupus Erythematosus. J Cell Immunol. 2019;1(2):33-42.

Gordon RA, Tilstra JS, Marinov A, Nickerson KM, Bastacky SI, Shlomchik MJ.

Murine lupus is neutrophil elastase-independent in the MRL. Faslpr model. PLoS One. 2020;15(4):e0226396.

Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2010;376(9746):1094-108.

Li Y, Yang Y, Gan T, Zhou J, Hu F, Hao N, Yuan B, Chen Y, Zhang M. Extracellular RNAs from lung cancer cells activate epithelial cells and induce neutrophil extracellular traps Int J Oncol. 2019;55(1):69-80.

Corsiero E, Pratesi F, Prediletto E, Bombardieri M, Migliorini P. NeTosis as Source of Autoantigens in Rheumatoid Arthritis. Front Immunol. 2016;7:485.

Tan W, Zhao X, Ma X, Wang W, Niu P, Xu W, Gao GF, Wu G. A novel corona virüs genome identified in a cluster of pneumonia cases Wuhan, China. China CDC Wkly 2020;2:61-2.

Daily briefing on novel corona virüs cases in China. 2020. Available at:

Cowland JB, Borregaard N. Granulopoiesis and granules of human neutrophils. Immunol Rev. 2016;273(1):11-28.

Rubio-Ponce A, Hidalgo A, Ballesteros I. How to bridle a neutrophil. Curr Opin Immunol. 2021;68:41-7.

Hidalgo A, Chilvers ER, Summers C, Koenderman L. The Neutrophil Life Cycle. Trends Immunol. 2019;40(7):584-97.

Adrover JM, Aroca-Crevillén A, Crainiciuc G, Ostos F, Rojas-Vega Y, Rubio-Ponce A, Cilloniz C, Bonzón-Kulichenko E, Calvo E, Rico D, Moro MA, Weber C, Lizasoaín I, Torres A, Ruiz-Cabello J, Vázquez J, Hidalgo A.

Programmed 'disarming' of the neutrophil proteome reduces the magnitude of inflammation. Nat Immunol. 2020;21(2):135-44.

Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, Blair C, Weber A, Barnes BJ, Egeblad M, Woods RJ, Kanthi Y, Knight JS. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999.

Liu Q, Chen H, Zeng Q. Clinical characteristics of COVID-19 patients with complication of cardiac arrhythmia. J Infect. 2020;81(3):6-8.

Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, Blair C, Weber A, Barnes BJ, Egeblad M, Woods RJ, Kanthi Y, Knight JS. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):138999.

Gong J, Dong H, Xia QS, Huang ZY, Wang DK, Zhao Y, Liu WH, Tu SH, Zhang MM, Wang Q, Lu FE. Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19: a retrospective study. BMC Infect Dis. 2020;20(1):963.

Thammavongsa V, Missiakas DM, Schneewind O. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science. 2013;342(6160):863-6.

Thierry AR, and Roch B. Neutrophil Extracellular Traps and By-Products Play a Key Role in COVID-19: Pathogenesis, Risk Factors, and Therapy. J. Clin. Med. 2020;9(9):9.

Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford J.M, Dassler-Plenker J, Guerci P, Huynh C, Knight J.S, Loda M, Looney M.R, Mcallister F, Rayes R, Renaud S, Rousseau S, Salvatore S, Schwartz RE, Spicer JD, Yost CC, Weber A, Zuo Y, Egeblad M. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J. Exp. Med. 2020;217:e20200652.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270-3.

Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991;10:2247–58.

Schulz C, Gabriel G, Von Kockritz-Blickwede M. Detrimental role of neutrophil extracellular traps during dengue virus infection. Trends Immunol. 2020;41:3–6.

Zhang B, Zhou X, Zhu C, Feng F, Qiu Y, Feng J, Jia Q, Song Q, Zhu B, Wang J. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. Front. Mol. Biosci. 2020;7:157.

Demkow U. Neutrophil Extracellular Traps (NETs) in Cancer Invasion, Evasion and Metastasis. Cancers (Basel). 2021;13(17):4495.

Shaul ME, Fridlender ZG. Tumour associated neutrophils in patients with cancer.

Nat Rev Clin Oncol. 2019;16(10):601-20.

Chen Q, Zhang L, Li X, Zhuo W. Neutrophil Extracellular Traps in Tumor Metastasis: Pathological Functions and Clinical Applications. Cancers (Basel). 2021;13(11):2832.

Li S, Cong X, Gao H, Lan X, Li Z, Wang W, Song S, Wang Y, Li C, Zhang H, Zhao Y, Xue Y. Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. J Exp Clin Cancer Res. 2019;38(1):6.

Cools-Lartigue J, Spicer J, Najmeh S, Ferri L. Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci. 2014;71(21):4179-94.

Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, Bourdeau F, Kubes P, Ferri L. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446-58.




How to Cite

Öğret, Y., & Öztürk Sezgin, M. (2023). THE RELATIONSHIP OF NETOSIS AND NET FORMATION WITH DISEASES. Türk Bilimsel Derlemeler Dergisi, 16(2), 33–46. Retrieved from