Abstract views: 110 / PDF downloads: 112


  • Anil Kumar Assistant Professor (Biological Sciences) Department of Basic & Applied Sciences School of Engineering & Sciences GD Goenka Education City, GD Goenka University 122103 - Sohna Road, Gurugram, Delhi NCR, Haryana, INDIA Mob: +919868325641/ +918130925418


Immune system, Neutrophils, NETs, autoimmune diseases


Neutrophils are considered to be a part of the first line of immune defence. They can be detected in the bloodstream, where they can live for 6–8 hours, and in tissue, for up to 7 days. Phagocytosis, degranulation, cytokine production, and, the most recently discovered, neutrophil extracellular trap (NET) generation are all strategies neutrophils use to defend their hosts. NETosis is a sort of neutrophil specific cell death marked by the release of the enormous web-like structures referred to as neutrophil extracellular traps (NETs). Two pathways of NETosis are known to date i) Suicidal/Classical Pathway which results in cell death, ii) Vital NETosis Pathway,in which the cell retains not only it's viability but also many of its effector activities are retained. Over the past decade and a half of research, it has been shown that NETs positively aid the body’s immune system in defending it from the pathogens. However, it has also been shown that neutrophils and NETs are not always beneficial to one’s body. They have been found at the sites of a multitude of diseases where they contribute to the pathogenesis of the disease by various means like presenting self-antigen to autoantibodies. In this review, the basic mechanism of NETosis, as well its role in some autoimmune diseases including Rheumatoid arthritis, Systemic Lupus Erythematosus, Type-1 Diabetes etc., along with various clinical applicationshave been discussed.


P. Hellebrekers, N. Vrisekoop, and L. Koenderman, “Neutrophil phenotypes in health and disease,” Eur J Clin Invest, vol. 48, p. e12943, Nov. 2018, doi: 10.1111/eci.12943.

S. D. Kobayashi, N. Malachowa, and F. R. DeLeo, “Neutrophils and Bacterial Immune Evasion,” J Innate Immun, vol. 10, no. 5–6, pp. 432–441, 2018, doi: 10.1159/000487756.

S. Crotty, “A brief history of T cell help to B cells.,” Nat Rev Immunol, vol. 15, no. 3, pp. 185–9, Mar. 2015, doi: 10.1038/nri3803.

J. M. Lackie, The Dictionary of Cell & Molecular Biology. Elsevier, 2007.

C. J. Janeway, P. Travers, and M. Walport, Immunobiology: The Immune System in Health and Disease., 5th ed. New York: Garland Science, 2001.

C. F. Urban et al., “Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Pro-tein Complex Involved in Host Defense against Candida albicans,” PLoS Pathog, vol. 5, no. 10, p. e1000639, Oct. 2009, doi: 10.1371/journal.ppat.1000639.

H. Takei, A. Araki, H. Watanabe, A. Ichinose, and F. Sendo, “Rapid killing of human neu-trophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis,” J Leukoc Biol, vol. 59, no. 2, pp. 229–240, Feb. 1996, doi: 10.1002/jlb.59.2.229.

V. Brinkmann et al., “Neutrophil Extracellular Traps Kill Bacteria,” Science (1979), vol. 303, no. 5663, pp. 1532–1535, Mar. 2004, doi: 10.1126/science.1092385.

V. Brinkmann and A. Zychlinsky, “Beneficial suicide: why neutrophils die to make NETs,” Nat Rev Microbiol, vol. 5, no. 8, pp. 577–582, Aug. 2007, doi: 10.1038/nrmicro1710.

B. Amulic et al., “Cell-Cycle Proteins Control Production of Neutrophil Extracellular Traps,” Dev Cell, vol. 43, no. 4, pp. 449-462.e5, Nov. 2017, doi: 10.1016/j.devcel.2017.10.013.

J. G. Nirmala and M. Lopus, “Cell death mechanisms in eukaryotes,” Cell Biol Toxicol, vol. 36, no. 2, pp. 145–164, Apr. 2020, doi: 10.1007/s10565-019-09496-2.

W. M. Nauseef and N. Borregaard, “Neutrophils at work,” Nat Immunol, vol. 15, no. 7, pp. 602–611, Jul. 2014, doi: 10.1038/ni.2921.

R. H. Pires, S. B. Felix, and M. Delcea, “The architecture of neutrophil extracellular traps investigated by atomic force microscopy,” Nanoscale, vol. 8, no. 29, pp. 14193–14202, 2016, doi: 10.1039/C6NR03416K.

S. R. Clark et al., “Platelet TLR4 activates neutrophil extracellular traps to ensnare bacte-ria in septic blood,” Nat Med, vol. 13, no. 4, pp. 463–469, Apr. 2007, doi: 10.1038/nm1565.

K. D. Metzler, C. Goosmann, A. Lubojemska, A. Zychlinsky, and V. Papayannopoulos, “A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dy-namics during NETosis.,” Cell Rep, vol. 8, no. 3, pp. 883–96, Aug. 2014, doi: 10.1016/j.celrep.2014.06.044.

V. Papayannopoulos, K. D. Metzler, A. Hakkim, and A. Zychlinsky, “Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps,” Journal of Cell Biology, vol. 191, no. 3, pp. 677–691, Nov. 2010, doi: 10.1083/jcb.201006052.

U. Repnik, M. Hafner Česen, and B. Turk, “Lysosomal membrane permeabilization in cell death: Concepts and challenges,” Mitochondrion, vol. 19, pp. 49–57, Nov. 2014, doi: 10.1016/j.mito.2014.06.006.

T. A. Fuchs et al., “Novel cell death program leads to neutrophil extracellular traps,” Jour-nal of Cell Biology, vol. 176, no. 2, pp. 231–241, Jan. 2007, doi: 10.1083/jcb.200606027.

M. Bianchi et al., “Restoration of NET formation by gene therapy in CGD controls asper-gillosis,” Blood, vol. 114, no. 13, pp. 2619–2622, Sep. 2009, doi: 10.1182/blood-2009-05-221606.

M. B. H. Lim, J. W. P. Kuiper, A. Katchky, H. Goldberg, and M. Glogauer, “Rac2 is re-quired for the formation of neutrophil extracellular traps,” J Leukoc Biol, vol. 90, no. 4, pp. 771–776, Oct. 2011, doi: 10.1189/jlb.1010549.

M. J. Kaplan and M. Radic, “Neutrophil Extracellular Traps: Double-Edged Swords of In-nate Immunity,” The Journal of Immunology, vol. 189, no. 6, pp. 2689–2695, Sep. 2012, doi: 10.4049/jimmunol.1201719.

Q. Remijsen et al., “Neutrophil extracellular trap cell death requires both autophagy and superoxide generation,” Cell Res, vol. 21, no. 2, pp. 290–304, Feb. 2011, doi: 10.1038/cr.2010.150.

H. Parker, M. Dragunow, M. B. Hampton, A. J. Kettle, and C. C. Winterbourn, “Require-ments for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus,” J Leukoc Biol, vol. 92, no. 4, pp. 841–849, Oct. 2012, doi: 10.1189/jlb.1211601.

Y. Wang et al., “Histone hypercitrullination mediates chromatin decondensation and neu-trophil extracellular trap formation,” Journal of Cell Biology, vol. 184, no. 2, pp. 205–213, Jan. 2009, doi: 10.1083/jcb.200806072.

Y. Wang et al., “Human PAD4 Regulates Histone Arginine Methylation Levels via De-methylimination,” Science (1979), vol. 306, no. 5694, pp. 279–283, Oct. 2004, doi: 10.1126/science.1101400.

S. Hemmers, J. R. Teijaro, S. Arandjelovic, and K. A. Mowen, “PAD4-Mediated Neutro-phil Extracellular Trap Formation Is Not Required for Immunity against Influenza Infec-tion,” PLoS One, vol. 6, no. 7, p. e22043, Jul. 2011, doi: 10.1371/journal.pone.0022043.

P. Li, M. Li, M. R. Lindberg, M. J. Kennett, N. Xiong, and Y. Wang, “PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps,” Journal of Ex-perimental Medicine, vol. 207, no. 9, pp. 1853–1862, Aug. 2010, doi: 10.1084/jem.20100239.

S. Yousefi, D. Simon, D. Stojkov, A. Karsonova, A. Karaulov, and H.-U. Simon, “In vivo evidence for extracellular DNA trap formation,” Cell Death Dis, vol. 11, no. 4, p. 300, Apr. 2020, doi: 10.1038/s41419-020-2497-x.

L. Galluzzi et al., “Molecular mechanisms of cell death: recommendations of the Nomen-clature Committee on Cell Death 2018,” Cell Death Differ, vol. 25, no. 3, pp. 486–541, Mar. 2018, doi: 10.1038/s41418-017-0012-4.

S. Yousefi et al., “Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense,” Nat Med, vol. 14, no. 9, pp. 949–953, Sep. 2008, doi: 10.1038/nm.1855.

S. Yousefi, C. Mihalache, E. Kozlowski, I. Schmid, and H. U. Simon, “Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps,” Cell Death Differ, vol. 16, no. 11, pp. 1438–1444, Nov. 2009, doi: 10.1038/cdd.2009.96.

M. Morshed et al., “NADPH oxidase-independent formation of extracellular DNA traps by basophils.,” J Immunol, vol. 192, no. 11, pp. 5314–23, Jun. 2014, doi: 10.4049/jimmunol.1303418.

B. Ingelsson et al., “Lymphocytes eject interferogenic mitochondrial DNA webs in re-sponse to CpG and non-CpG oligodeoxynucleotides of class C,” Proceedings of the Na-tional Academy of Sciences, vol. 115, no. 3, Jan. 2018, doi: 10.1073/pnas.1711950115.

C. Lood et al., “Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease,” Nat Med, vol. 22, no. 2, pp. 146–153, Feb. 2016, doi: 10.1038/nm.4027.

M. J. Kaplan, “Neutrophils in the pathogenesis and manifestations of SLE,” Nat Rev Rheumatol, vol. 7, no. 12, pp. 691–699, Dec. 2011, doi: 10.1038/nrrheum.2011.132.

M. J. White et al., “Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production,” Cell, vol. 159, no. 7, pp. 1549–1562, Dec. 2014, doi: 10.1016/j.cell.2014.11.036.

S. Martinelli et al., “Induction of Genes Mediating Interferon-dependent Extracellular Trap Formation during Neutrophil Differentiation,” Journal of Biological Chemistry, vol. 279, no. 42, pp. 44123–44132, Oct. 2004, doi: 10.1074/jbc.M405883200.

A. Hakkim et al., “Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis,” Proceedings of the National Academy of Sciences, vol. 107, no. 21, pp. 9813–9818, May 2010, doi: 10.1073/pnas.0909927107.

C. Janko et al., “Inflammatory clearance of apoptotic remnants in systemic lupus erythe-matosus (SLE),” Autoimmun Rev, vol. 8, no. 1, pp. 9–12, Oct. 2008, doi: 10.1016/j.autrev.2008.07.015.

Y. Zhao, T. N. Marion, and Q. Wang, “Multifaceted Roles of Neutrophils in Autoimmune Diseases,” J Immunol Res, vol. 2019, pp. 1–2, Mar. 2019, doi: 10.1155/2019/7896738.

C. Pérez-Sánchez et al., “Diagnostic potential of NETosis-derived products for disease activity, atherosclerosis and therapeutic effectiveness in Rheumatoid Arthritis patients,” J Autoimmun, vol. 82, pp. 31–40, Aug. 2017, doi: 10.1016/j.jaut.2017.04.007.

P. Eggleton, L. Wang, J. Penhallow, N. Crawford, and K. A. Brown, “Differences in oxida-tive response of subpopulations of neutrophils from healthy subjects and patients with rheumatoid arthritis.,” Ann Rheum Dis, vol. 54, no. 11, pp. 916–923, Nov. 1995, doi: 10.1136/ard.54.11.916.

H. L. Wright, R. J. Moots, and S. W. Edwards, “The multifactorial role of neutrophils in rheumatoid arthritis,” Nat Rev Rheumatol, vol. 10, no. 10, pp. 593–601, Oct. 2014, doi: 10.1038/nrrheum.2014.80.

G. Fossati, R. J. Moots, R. C. Bucknall, and S. W. Edwards, “Differential role of neutrophil Fc? receptor IIIB (CD16) in phagocytosis, bacterial killing, and responses to immune complexes,” Arthritis Rheum, vol. 46, no. 5, pp. 1351–1361, May 2002, doi: 10.1002/art.10230.

L. K. Assi et al., “Tumor necrosis factor α activates release of B lymphocyte stimulator by neutrophils infiltrating the rheumatoid joint,” Arthritis Rheum, vol. 56, no. 6, pp. 1776–1786, Jun. 2007, doi: 10.1002/art.22697.

S. Tanaka, “Emerging anti-osteoclast therapy for rheumatoid arthritis,” Journal of Ortho-paedic Science, vol. 23, no. 5, pp. 717–721, Sep. 2018, doi: 10.1016/j.jos.2018.06.001.

E. Lupia, G. Montrucchio, E. Battaglia, V. Modena, and G. Camussi, “Role of tumor ne-crosis factor-α and platelet-activating factor in neoangiogenesis induced by synovial fluids of patients with rheumatoid arthritis,” Eur J Immunol, vol. 26, no. 8, pp. 1690–1694, Aug. 1996, doi: 10.1002/eji.1830260804.

H. L. Wright, B. Chikura, R. C. Bucknall, R. J. Moots, and S. W. Edwards, “Changes in expression of membrane TNF, NF-κB activation and neutrophil apoptosis during active and resolved inflammation,” Ann Rheum Dis, vol. 70, no. 3, pp. 537–543, Mar. 2011, doi: 10.1136/ard.2010.138065.

F. Wei, Y. Chang, and W. Wei, “The role of BAFF in the progression of rheumatoid arthri-tis,” Cytokine, vol. 76, no. 2, pp. 537–544, Dec. 2015, doi: 10.1016/j.cyto.2015.07.014.

A. Chakravarti, M.-A. Raquil, P. Tessier, and P. E. Poubelle, “Surface RANKL of Toll-like receptor 4–stimulated human neutrophils activates osteoclastic bone resorption,” Blood, vol. 114, no. 8, pp. 1633–1644, Aug. 2009, doi: 10.1182/blood-2008-09-178301.

A. Cross, R. C. Bucknall, M. A. Cassatella, S. W. Edwards, and R. J. Moots, “Synovial fluid neutrophils transcribe and express class II major histocompatibility complex mole-cules in rheumatoid arthritis,” Arthritis Rheum, vol. 48, no. 10, pp. 2796–2806, Oct. 2003, doi: 10.1002/art.11253.

A. T. Borchers, S. M. Naguwa, Y. Shoenfeld, and M. E. Gershwin, “The geoepidemiology of systemic lupus erythematosus,” Autoimmun Rev, vol. 9, no. 5, pp. A277–A287, Mar. 2010, doi: 10.1016/j.autrev.2009.12.008.

P. A. Courtney, A. D. Crockard, K. Williamson, A. E. Irvine, R. J. Kennedy, and A. L. Bell, “Increased apoptotic peripheral blood neutrophils in systemic lupus erythematosus: rela-tions with disease activity, antibodies to double stranded DNA, and neutropenia,” Ann Rheum Dis, vol. 58, no. 5, pp. 309–314, May 1999, doi: 10.1136/ard.58.5.309.

R. Lande et al., “Neutrophils Activate Plasmacytoid Dendritic Cells by Releasing Self-DNA–Peptide Complexes in Systemic Lupus Erythematosus,” Sci Transl Med, vol. 3, no. 73, Mar. 2011, doi: 10.1126/scitranslmed.3001180.

C. K. Smith and M. J. Kaplan, “The role of neutrophils in the pathogenesis of systemic lupus erythematosus,” Curr Opin Rheumatol, vol. 27, no. 5, pp. 448–453, Sep. 2015, doi: 10.1097/BOR.0000000000000197.

P. Blanco, A. K. Palucka, M. Gill, V. Pascual, and J. Banchereau, “Induction of Dendritic Cell Differentiation by IFN-α in Systemic Lupus Erythematosus,” Science (1979), vol. 294, no. 5546, pp. 1540–1543, Nov. 2001, doi: 10.1126/science.1064890.

A. Mahajan, M. Herrmann, and L. E. Muñoz, “Clearance Deficiency and Cell Death Path-ways: A Model for the Pathogenesis of SLE,” Front Immunol, vol. 7, Feb. 2016, doi: 10.3389/fimmu.2016.00035.

T. B. Niewold, D. N. Clark, R. Salloum, and B. D. Poole, “Interferon Alpha in Systemic Lupus Erythematosus,” J Biomed Biotechnol, vol. 2010, pp. 1–8, 2010, doi: 10.1155/2010/948364.

C. Farrera and B. Fadeel, “Macrophage Clearance of Neutrophil Extracellular Traps Is a Silent Process,” The Journal of Immunology, vol. 191, no. 5, pp. 2647–2656, Sep. 2013, doi: 10.4049/jimmunol.1300436.

U. S. Gaipl et al., “Cooperation between C1q and DNase I in the clearance of necrotic cell-derived chromatin,” Arthritis Rheum, vol. 50, no. 2, pp. 640–649, Feb. 2004, doi: 10.1002/art.20034.

T.-M. Yeh, H.-C. Chang, C.-C. Liang, J.-J. Wu, and M.-F. Liu, “Deoxyribonuclease-Inhibitory antibodies in systemic lupus erythematosus,” J Biomed Sci, vol. 10, no. 5, pp. 544–551, Sep. 2003, doi: 10.1007/BF02256116.

M. A. Atkinson, G. S. Eisenbarth, and A. W. Michels, “Type 1 diabetes,” The Lancet, vol. 383, no. 9911, pp. 69–82, Jan. 2014, doi: 10.1016/S0140-6736(13)60591-7.

M. J. Gan, A. Albanese-O’Neill, and M. J. Haller, “Type 1 Diabetes: Current Concepts in Epidemiology, Pathophysiology, Clinical Care, and Research,” Curr Probl Pediatr Adolesc Health Care, vol. 42, no. 10, pp. 269–291, Nov. 2012, doi: 10.1016/j.cppeds.2012.07.002.

J. S. Skyler and J. M. Sosenko, “The Evolution of Type 1 Diabetes,” JAMA, vol. 309, no. 23, p. 2491, Jun. 2013, doi: 10.1001/jama.2013.6286.

T. L. van Belle, K. T. Coppieters, and M. G. von Herrath, “Type 1 Diabetes: Etiology, Im-munology, and Therapeutic Strategies,” Physiol Rev, vol. 91, no. 1, pp. 79–118, Jan. 2011, doi: 10.1152/physrev.00003.2010.

F. Hanses, S. Park, J. Rich, and J. C. Lee, “Reduced Neutrophil Apoptosis in Diabetic Mice during Staphylococcal Infection Leads to Prolonged Tnfα Production and Reduced Neutrophil Clearance,” PLoS One, vol. 6, no. 8, p. e23633, Aug. 2011, doi: 10.1371/journal.pone.0023633.

K. I. Alexandraki et al., “Cytokine Secretion in Long-standing Diabetes Mellitus Type 1 and 2: Associations with Low-grade Systemic Inflammation,” J Clin Immunol, vol. 28, no. 4, pp. 314–321, Jul. 2008, doi: 10.1007/s10875-007-9164-1.

A. Valle et al., “Reduction of Circulating Neutrophils Precedes and Accompanies Type 1 Diabetes,” Diabetes, vol. 62, no. 6, pp. 2072–2077, Jun. 2013, doi: 10.2337/db12-1345.

L. E. Padgett, K. A. Broniowska, P. A. Hansen, J. A. Corbett, and H. M. Tse, “The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis,” Ann N Y Acad Sci, vol. 1281, no. 1, pp. 16–35, Apr. 2013, doi: 10.1111/j.1749-6632.2012.06826.x.

F. A. Grieco, F. Vendrame, I. Spagnuolo, and F. Dotta, “Innate immunity and the patho-genesis of type 1 diabetes,” Semin Immunopathol, vol. 33, no. 1, pp. 57–66, Jan. 2011, doi: 10.1007/s00281-010-0206-z.

Y. Wang et al., “Increased Neutrophil Elastase and Proteinase 3 and Augmented NETosis Are Closely Associated With β-Cell Autoimmunity in Patients With Type 1 Diabetes,” Diabetes, vol. 63, no. 12, pp. 4239–4248, Dec. 2014, doi: 10.2337/db14-0480.

E. J. Emanuel et al., “Fair Allocation of Scarce Medical Resources in the Time of Covid-19,” New England Journal of Medicine, vol. 382, no. 21, pp. 2049–2055, May 2020, doi: 10.1056/NEJMsb2005114.

B. K. Manne et al., “Platelet gene expression and function in patients with COVID-19,” Blood, vol. 136, no. 11, pp. 1317–1329, Sep. 2020, doi: 10.1182/blood.2020007214.

C. Rosales, “Neutrophils at the crossroads of innate and adaptive immunity,” J Leukoc Biol, vol. 108, no. 1, pp. 377–396, Jul. 2020, doi: 10.1002/JLB.4MIR0220-574RR.

B. J. Barnes et al., “Targeting potential drivers of COVID-19: Neutrophil extracellular traps,” Journal of Experimental Medicine, vol. 217, no. 6, Jun. 2020, doi: 10.1084/jem.20200652.

Y. Zuo et al., “Neutrophil extracellular traps in COVID-19,” JCI Insight, Apr. 2020, doi: 10.1172/jci.insight.138999.

V. Brinkmann, “Neutrophil Extracellular Traps in the Second Decade,” J Innate Immun, vol. 10, no. 5–6, pp. 414–421, 2018, doi: 10.1159/000489829.

S. Masuda et al., “Formation and Disordered Degradation of Neutrophil Extracellular Traps in Necrotizing Lesions of Anti-Neutrophil Cytoplasmic Antibody–Associated Vascu-litis,” Am J Pathol, vol. 189, no. 4, pp. 839–846, Apr. 2019, doi: 10.1016/j.ajpath.2019.01.007.

C. F. M. FRANSSEN et al., “In Vitro Neutrophil Activation by Antibodies to Proteinase 3 and Myeloperoxidase from Patients with Crescentic Glomerulonephritis,” Journal of the American Society of Nephrology, vol. 10, no. 7, pp. 1506–1515, Jul. 1999, doi: 10.1681/ASN.V1071506.

D. Söderberg, T. Kurz, A. Motamedi, T. Hellmark, P. Eriksson, and M. Segelmark, “In-creased levels of neutrophil extracellular trap remnants in the circulation of patients with small vessel vasculitis, but an inverse correlation to anti-neutrophil cytoplasmic antibodies during remission,” Rheumatology, vol. 54, no. 11, pp. 2085–2094, Nov. 2015, doi: 10.1093/rheumatology/kev217.

V. Ramos-Kichik et al., “Neutrophil extracellular traps are induced by Mycobacterium tu-berculosis,” Tuberculosis, vol. 89, no. 1, pp. 29–37, Jan. 2009, doi: 10.1016/

K. Kessenbrock et al., “Netting neutrophils in autoimmune small-vessel vasculitis,” Nat Med, vol. 15, no. 6, pp. 623–625, Jun. 2009, doi: 10.1038/nm.1959.

A. M. Abreu-Velez, J. G. Smith, and M. S. Howard, “Presence of neutrophil extracellular traps and antineutrophil cytoplasmic antibodies associated with vasculitides.,” N Am J Med Sci, vol. 1, no. 6, pp. 309–13, Nov. 2009.

S. Sangaletti et al., “Neutrophil extracellular traps mediate transfer of cytoplasmic neutro-phil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmu-nity,” Blood, vol. 120, no. 15, pp. 3007–3018, Oct. 2012, doi: 10.1182/blood-2012-03-416156.

D. Nakazawa, U. Tomaru, C. Yamamoto, S. Jodo, and A. Ishizu, “Abundant neutrophil extracellular traps in thrombus of patient with microscopic polyangiitis,” Front Immunol, vol. 3, 2012, doi: 10.3389/fimmu.2012.00333.

T. Imamoto et al., “Possible linkage between microscopic polyangiitis and thrombosis via neutrophil extracellular traps.,” Clin Exp Rheumatol, vol. 32, no. 1, pp. 149–50.

J.-Y. Seo, C.-H. Suh, J.-Y. Jung, A.-R. Kim, J. W. Yang, and H.-A. Kim, “The neutrophil-to-lymphocyte ratio could be a good diagnostic marker and predictor of relapse in patients with adult-onset Still’s disease,” Medicine, vol. 96, no. 29, p. e7546, Jul. 2017, doi: 10.1097/MD.0000000000007546.

R. Giacomelli, P. Ruscitti, and Y. Shoenfeld, “A comprehensive review on adult onset Still’s disease,” J Autoimmun, vol. 93, pp. 24–36, Sep. 2018, doi: 10.1016/j.jaut.2018.07.018.

D. Lebrun et al., “Validation of the Fautrel classification criteria for adult-onset Still’s dis-ease,” Semin Arthritis Rheum, vol. 47, no. 4, pp. 578–585, Feb. 2018, doi: 10.1016/j.semarthrit.2017.07.005.

Q. Hu et al., “Increased neutrophil extracellular traps activate NLRP3 and inflammatory macrophages in adult-onset Still’s disease,” Arthritis Res Ther, vol. 21, no. 1, p. 9, Dec. 2019, doi: 10.1186/s13075-018-1800-z.

S. Berger-Achituv et al., “A proposed role for neutrophil extracellular traps in cancer im-munoediting,” Front Immunol, vol. 4, 2013, doi: 10.3389/fimmu.2013.00048.

J. Cools-Lartigue, J. Spicer, S. Najmeh, and L. Ferri, “Neutrophil extracellular traps in cancer progression,” Cellular and Molecular Life Sciences, vol. 71, no. 21, pp. 4179–4194, Nov. 2014, doi: 10.1007/s00018-014-1683-3.

I. Homa-Mlak, A. Majdan, R. Mlak, and T. Małecka-Massalska, “Metastatic potential of NET in neoplastic disease,” Postepy Hig Med Dosw, vol. 70, pp. 887–895, Aug. 2016, doi: 10.5604/17322693.1216275.

S. Sangaletti et al., “Defective Stromal Remodeling and Neutrophil Extracellular Traps in Lymphoid Tissues Favor the Transition from Autoimmunity to Lymphoma,” Cancer Dis-cov, vol. 4, no. 1, pp. 110–129, Jan. 2014, doi: 10.1158/2159-8290.CD-13-0276.

R. Oklu, R. A. Sheth, K. H. K. Wong, A. H. Jahromi, and H. Albadawi, “Neutrophil ex-tracellular traps are increased in cancer patients but does not associate with venous thrombosis,” Cardiovasc Diagn Ther, vol. 7, no. S3, pp. S140–S149, Dec. 2017, doi: 10.21037/cdt.2017.08.01.

B. Ho-Tin-Noé, C. Carbo, M. Demers, S. M. Cifuni, T. Goerge, and D. D. Wagner, “Innate Immune Cells Induce Hemorrhage in Tumors during Thrombocytopenia,” Am J Pathol, vol. 175, no. 4, pp. 1699–1708, Oct. 2009, doi: 10.2353/ajpath.2009.090460.

M. Demers and D. Wagner, “NETosis: A New Factor in Tumor Progression and Cancer-Associated Thrombosis,” Semin Thromb Hemost, vol. 40, no. 03, pp. 277–283, Mar. 2014, doi: 10.1055/s-0034-1370765.

V. Brinkmann and A. Zychlinsky, “Neutrophil extracellular traps: Is immunity the second function of chromatin?,” Journal of Cell Biology, vol. 198, no. 5, pp. 773–783, Sep. 2012, doi: 10.1083/jcb.201203170.

A. Neumann et al., “The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps,” Biochemical Journal, vol. 464, no. 1, pp. 3–11, Nov. 2014, doi: 10.1042/BJ20140778.

S. S. Burgener and K. Schroder, “Neutrophil Extracellular Traps in Host Defense,” Cold Spring Harb Perspect Biol, vol. 12, no. 7, p. a037028, Jul. 2020, doi: 10.1101/cshperspect.a037028.

A. T. Borchers, C. Chang, M. E. Gershwin, and L. J. Gershwin, “Respiratory Syncytial Virus—A Comprehensive Review,” Clin Rev Allergy Immunol, vol. 45, no. 3, pp. 331–379, Dec. 2013, doi: 10.1007/s12016-013-8368-9.

T. Saitoh et al., “Neutrophil Extracellular Traps Mediate a Host Defense Response to Human Immunodeficiency Virus-1,” Cell Host Microbe, vol. 12, no. 1, pp. 109–116, Jul. 2012, doi: 10.1016/j.chom.2012.05.015.

E. Gwyer Findlay, S. M. Currie, and D. J. Davidson, “Cationic Host Defence Peptides: Potential as Antiviral Therapeutics,” BioDrugs, vol. 27, no. 5, pp. 479–493, Oct. 2013, doi: 10.1007/s40259-013-0039-0.

A. McCormick et al., “NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus,” Microbes Infect, vol. 12, no. 12–13, pp. 928–936, Nov. 2010, doi: 10.1016/j.micinf.2010.06.009.

N. Branzk et al., “Neutrophils sense microbe size and selectively release neutrophil ex-tracellular traps in response to large pathogens,” Nat Immunol, vol. 15, no. 11, pp. 1017–1025, Nov. 2014, doi: 10.1038/ni.2987.

S. Bruns et al., “Production of Extracellular Traps against Aspergillus fumigatus In Vitro and in Infected Lung Tissue Is Dependent on Invading Neutrophils and Influenced by Hy-drophobin RodA,” PLoS Pathog, vol. 6, no. 4, p. e1000873, Apr. 2010, doi: 10.1371/journal.ppat.1000873.

G. M. Carroll et al., “Does postoperative inflammation or sepsis generate neutrophil ex-tracellular traps that influence colorectal cancer progression? A systematic review,” Surg Open Sci, vol. 2, no. 2, pp. 57–69, Apr. 2020, doi: 10.1016/j.sopen.2019.12.005.

V. S. Baker et al., “Cytokine-associated neutrophil extracellular traps and antinuclear an-tibodies in Plasmodium falciparum infected children under six years of age,” Malar J, vol. 7, no. 1, p. 41, Dec. 2008, doi: 10.1186/1475-2875-7-41.

D. S. Abi Abdallah, C. Lin, C. J. Ball, M. R. King, G. E. Duhamel, and E. Y. Denkers, “Toxoplasma gondii Triggers Release of Human and Mouse Neutrophil Extracellular Traps,” Infect Immun, vol. 80, no. 2, pp. 768–777, Feb. 2012, doi: 10.1128/IAI.05730-11.

L. Zhu et al., “High Level of Neutrophil Extracellular Traps Correlates With Poor Prognosis of Severe Influenza A Infection,” J Infect Dis, vol. 217, no. 3, pp. 428–437, Jan. 2018, doi: 10.1093/infdis/jix475.

R. H. L. Li, L. R. Johnson, C. Kohen, and F. Tablin, “A novel approach to identifying and quantifying neutrophil extracellular trap formation in septic dogs using immunofluores-cence microscopy,” BMC Vet Res, vol. 14, no. 1, p. 210, Dec. 2018, doi: 10.1186/s12917-018-1523-z.

C. Thålin, Y. Hisada, S. Lundström, N. Mackman, and H. Wallén, “Neutrophil Extracellular Traps,” Arterioscler Thromb Vasc Biol, vol. 39, no. 9, pp. 1724–1738, Sep. 2019, doi: 10.1161/ATVBAHA.119.312463.

J. Park et al., “Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps,” Sci Transl Med, vol. 8, no. 361, Oct. 2016, doi: 10.1126/scitranslmed.aag1711.

M. Saffarzadeh, “Neutrophil Extracellular Traps as a Drug Target to Counteract Chronic and Acute Inflammation,” Curr Pharm Biotechnol, vol. 19, no. 15, pp. 1196–1202, Feb. 2019, doi: 10.2174/1389201020666190111164145.

Wu, Saxena, Awaji, and Singh, “Tumor-Associated Neutrophils in Cancer: Going Pro,” Cancers (Basel), vol. 11, no. 4, p. 564, Apr. 2019, doi: 10.3390/cancers11040564.

M. Gonzalez-Aparicio and C. Alfaro, “Influence of Interleukin-8 and Neutrophil Extracellu-lar Trap (NET) Formation in the Tumor Microenvironment: Is There a Pathogenic Role?,” J Immunol Res, vol. 2019, pp. 1–7, Apr. 2019, doi: 10.1155/2019/6252138.

S. Tohme et al., “Neutrophil Extracellular Traps Promote the Development and Progres-sion of Liver Metastases after Surgical Stress,” Cancer Res, vol. 76, no. 6, pp. 1367–1380, Mar. 2016, doi: 10.1158/0008-5472.CAN-15-1591.

C. Thålin et al., “Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer,” PLoS One, vol. 13, no. 1, p. e0191231, Jan. 2018, doi: 10.1371/journal.pone.0191231.

M. Hollmén et al., “G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer,” Oncoimmunology, vol. 5, no. 3, p. e1115177, Mar. 2016, doi: 10.1080/2162402X.2015.1115177.

R. R. Koenen, “Neutrophil Extracellular Traps as Therapeutic Targets for Inflammatory Disease,” Am J Pharmacol Toxicol, vol. 9, no. 4, pp. 200–202, Apr. 2014, doi: 10.3844/ajptsp.2014.200.202.

S. K. Jorch and P. Kubes, “An emerging role for neutrophil extracellular traps in noninfec-tious disease,” Nat Med, vol. 23, no. 3, pp. 279–287, Mar. 2017, doi: 10.1038/nm.4294.




How to Cite

Kumar, A. (2023). NEW INSIGHTS OF NEUTROPHIL EXTRACELLULAR TRAPS (NETS) IN AUTOIMMUNITY AND ITS APPLICATIONS¬¬¬. Türk Bilimsel Derlemeler Dergisi, 16(2), 1–21. Retrieved from