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ABSTRACT. Plants do not have the ability to migrate to another suitable environment like other living 

things, for this reason, they should adapt to the different environmental conditions or their reproduction, 

the development and the growth are negatively affected. All these negative situations that affect plants 

negatively are called stress that are divided into two groups biotic and abiotic. The cold stress has two main 

effects on the plant: low temperature and dehydration. Plants create a tolerance response to this stress by 

laying out the transcriptional levels of proteins with different functions and especially transcription factors 

and some genes. Molecules involved directly or indirectly here include cryoprotectant proteins, chaperones, 

transcription factors and kinases. In the current review article, it was aimed to examine the cellular 

responses of medicinal plants treated with the cold stress during the adaptation process at the molecular 

level. 
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INTRODUCTION 

Medicinal plants have antimicrobial properties thanks to the secondary metabolites 

they contain, which allows them to be used for traditional medicine from ancient 

civilizations to the present. Along with the ever-developing scientific medicine, medicinal 

plants are still widely used around the world. The presence of approximately 20,000 

medicinal plants, which are also the active ingredients of drugs used in the healing of 

many diseases, and for this reason, the World Health Organization (WHO) informed the 

countries for the use of traditional medicine in 1977 [1] and a year later, research and 

training centers were established in order to examine the medicinal plants in detail. As a 

result of the call for the establishment of medicinal plants, more use was encouraged [2]. 

Again, accordingly the research of the WHO [3], 80% of the developing countries and 

60% of the countries around the world perform their health care by using traditional 

medicine [4, 5, 6]. 

Medicinal plants are widely used in a many of industries in the world. Due to the over 

side effects of artificial drugs produced in the pharmaceutical sector today, people use 

plants again to find healing in natural ways [7, 8]. In addition to taking an important place 

in the pharmaceutical industry with the active substances obtained from the secondary 

metabolites of medicinal plants, they are also used in cosmetics, spices, food, paints, 

insecticides, resins, gums, etc. It is also used in other areas, and its essential oils with 

aromatic properties are also used in the perfume industry [1, 9]. 

The secondary metabolites of plant, unlike primary metabolites, are not essential for 

the plant viability and metabolism, but are small molecule metabolism products necessary 
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for its secondary needs [10, 11]. Plants can synthesize secondary compounds including 

taxoids, polysaccharides, and flavones in addition to the basic nutrients they synthesize 

for their basic needs, such as protein, fat and carbohydrates, and in this way, the threats 

posed by bacteria, fungi and even other plants, as well as the biological stress they 

experience and environmental factors such as drought, temperature, humidity, UV rays 

and salinity. They can adapt to abiotic stresses caused by threats [12, 13]. At the same 

time, they communicate with other living things in which they are in harmony, and ensure 

the realization of events such as pollination and seed distribution, signaling, stimulating 

or inhibiting enzymes, acting as a cofactor for the catalytic activity of an enzyme [13, 14, 

15]. Contrary to the sudden death of the plant in the absence of primary metabolites, in 

the absence or deficiency of secondary metabolites, adverse effects on the physical 

appearance of the plant, regression in reproduction and development are observed, while 

sometimes no change can be observed [16]. 

Plants are organisms that are in constant interaction with the external environment 

throughout their lives. As a result of changes in their environment, they do not have the 

ability to migrate to another suitable environment like other living things, and because 

they are sessile organisms, they either show the ability to adapt to the environmental 

condition changes or their reproduction, the development, the viability and the growth are 

negatively affected. All these negative situations that affect plants negatively are defined 

as stress [17, 18]. Some of these stresses are abiotic factors such as extreme cold, drought, 

excessive salinity, chemicals, UV radiation, while others are biotic factors created by 

microorganisms such as bacteria, fungi and predator animals [19]. Plant tolerance, 

however, refers to the continuation of the plant's potency to reproduce and survive by 

developing a physical, biochemical or molecular defense mechanism under these 

environmental and biological stress conditions [20]. In this review article, it was aimed 

to examine the cellular responses of medicinal plants treated with low teperature during 

the adaptation process at the molecular level. The present study is derived from a part of 

the related author's master's thesis. 

 

The Abiotic Stress In Plants 
 

Recently, as a result of climatic changes such as global warming, which tends to 

increase, and anthropogenic activities such as improper fertilization, sudden increases and 

decreases in temperatures, drought, excessive salinity, excess or insufficient amount of 

soil nutrients, changes in the amount of light and abiotic reactions such as UV rays. Stress 

factors, either alone or in combination, disrupt plant homeostasis, and this adversely 

affects plant growth, development and reproduction. Plants, like all other living things, 

suppress their developmental germination, reduce growth and reproduction against 

abiotic stresses in order to survive and continue their generation; physiologically, 

decrease in water intake, change in transmission rate, decrease in photosynthesis and 

nitrogen assimilation, change in respiration, accumulation of growth inhibitors; 

molecularly, it responds in the form of the gene expression regulation, synthesis of 

macromolecules, reduction of the activities of crucial enzymes, the synthesis reduction of 

protein and irregularity of membrane structure [21]. Depending on the severity and 

duration of any abiotic factors, the plant tolerance with its responses to this negative 

situation changes, and if the plant is subjected to excessive stress for a long time, it may 

not be able to tolerate this situation and result in death. 
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Among abiotic factors, cold stress is one of the most restrictive stresses for plant 

metabolism, development and growth. Cold stress has two main impacts on the plant: low 

temperature and dehydration. The cold effect occurs when the plant is exposed to 

temperatures below 15˚C, which is called chilling temperature, or below 0˚C, which is 

called freezing temperature (Fig. 1). At temperatures below 15˚C, some limitations are 

observed in the enzyme activation included in the plant's respiration and photosynthesis 

processes [22, 23, 24] and biological events such as flowering, but the temperature level 

When it returns to an optimal level for the plant or when adaptation is in question, the 

plant continues its metabolic activities. However, at freezing temperatures under the 0˚C, 

formation of ice begins in the extracellular area of plant cells and the water content in the 

soil, and this prevents water flow, causing dehydration and osmotic stress, and puts the 

plant on an irreversible path [21, 25, 26]. When dehydration occurs in the plant depending 

on the freezing temperature, ice formation begins in the intracellular area. This causes 

negative turgor pressure to occur and the protoplast volume to decrease. In addition, it 

can cause the formation of radicals that cause oxidative stress, denaturation of proteins, 

and changes in membrane potentials. As a result of intracellular and extracellular ice 

formation, it is the breakdown of plant tissues and membrane bilayer layer by freezing 

dehydration that will cause the worst damage to the plant [21, 25, 27, 28, 29]. 

 

 
Fig. 1. Effects of cold stress on plants [25]. 

 

Different species show very different tolerances to cold temperatures to cope with 

cold stress. For example, plants that are sensitive to low temperature in tropical regions 

are damaged irreversibly as a result of deterioration of metabolism, alteration of protein 

and membrane structure, and inhibition of some enzymatic reactions even at cold 

temperatures, while plants that are tolerant to low temperatures and sensitive to freezing 

temperatures are susceptible to temperatures slightly below freezing. They can even 

survive, but they can get very risky damage as a result of their tissues freezing. In addition, 

plants that are tolerant to freezing temperatures can survive at these temperatures 
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depending on the cold treatment time and the freezing severity [30]. As a result, the extent 

of the damage that low temperatures will cause on the plant; 

 the tissue type, 

 the stage of growth and development, 

 to freezing time 

 and depending on the cooling rate. 

When plants are faced to sudden variations in their environmental conditions, they try 

to adapt to the environment with some arrangements at the molecular level, despite the 

deterioration of their physiological and metabolic intracellular balances. When most 

plants are exposed to chilling temperatures, they increase the molecules accumulation 

such as osmolytes and cryoprotectants, which contain soluble sugars, and also change the 

cellular membrane composition. This process, called cold acclimation, helps plants 

tolerate frost stress [24, 31, 32]. When the plant experiences cold-induced stress at lower 

temperatures, it senses this by conformational changes in membrane stability and proteins 

as a result of the plasma membrane changing from a liquid crystal state to a solid gel state. 

This perception results in the transfer of the signal into the cell by causing the release of 

Ca2+ ions, which are the secondary messengers, from the cell surface via Ca+2 channels, 

and from within the cell from some organelles (mitochondria, endoplasmic reticulum) to 

the cytosol [33, 34, 35, 36, 37]. This triggers protein kinases and a number of transcription 

factor cascades, thereby activating various signal transduction pathways. Thus, the 

activation and/or inhibition of proteins such as cold-induced Hsp, LEA, COR, ICE is 

achieved, and eventually a molecular level response to stress occurs in the nucleus (Fig. 

2). 

 
 Fig. 2. A general molecular response to cold stress 

 

Cold Stress Genes 

Low temperatures are one of the most significant environmental stresses affecting 

plant productivity, growth, and development as well as their geological distribution [69]. 

Plants create a tolerance response to this factor by arranging the transcriptional levels of 

proteins with different functions and especially transcription factors and some genes. 

Molecules involved directly or indirectly here include cryoprotectant proteins, 

chaperones, transcription factors and kinases [31, 37]. 
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C-Repeat/Dehydration Responsive Element-Binding Factor 

 

CBFs, also known as dehydration sensitive element binding factors (DREB), which 

are members of the AP2/ERF (APETALA2/Ethylene Sensitive Factor) transcription 

factor superfamily, play a role in the expression of cold-induced COR genes [24, 37, 38, 

39]. For the protein expressions in charge of the cold stress response, CBF/DREB TFs 

bind to specific sequences (C-repeat: TGGCCCGAC) containing highly conserved 

CCGAC bases, also known as DRE/CRT, in the promoter site of cold and dehydration 

sensitive genes to positively control the expression of genes of interest [37, 40, 41, 42]. 

It has been reported by studies that proteins synthesized by CBF/DREB TFs in many 

plants are effective in the formation of cold tolerance by affecting the increase of the 

accumulation of proline, unsaturated fatty acids, and soluble sugars. There are some 

studies showing increased cold tolerance in some plant species of CBF TFs and in 

transgenic plants developed to overexpress CBF/DREB genes [43]. As seen in Table 1, 

CBF signal transduction pathway is very important for many plants in tolerating low 

temperature stress. 

As shown in Fig. 4, transcription of CBF genes is regulated by some cold signaling 

molecules such as ICE, CAMTA, HOS, CCA, BZR and MYB [44, 45]. ICE, CAMTA, 

BZR and CCA regulate the positive gene expression by connecting to the promoter site 

of the CBF gene, while HOS1 negatively regulates the CBFs expression indirectly 

through 26S proteosome-mediated degradation of ICEs. 

 

 
Fig. 3. The role of CBF transcription factors in the acquisition of cold stress tolerance 

[24]. 

MYB Transcription Factors 

 

Plants manage to survive by arranging various signal networks with their wide range 

of TFs to adapt to the alteration of the environmental factors in their environment. MYBs 

are also one of the largest TFs families, accounting for approximately 9% of total TFs in 

plants. MYB proteins have MYB domains consisting of different repeats such as R1, R2, 
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R3, and R4 at their N-terminal ends and are basically divided into four subgroups 

according to these repeats. 1R-MYBs are classified as MYB-associated proteins, 2R-

MYBs are R2R3-type MYB proteins, 3R-MYBs are R1R2R3-MYB proteins, and 4R-

MYBs are classified as 4R-like MYB proteins [46, 47]. It has been stated in the works 

that MYB genes positively regulate the expression of many proteins included in the 

formation of the response to abiotic factors (Table 1). When studies on transgenic A. 

thaliana and O. sativa plants, which were developed to overexpress MYB genes, are 

examined, it is seen that OsMYB3R-2 gene is effective in gaining tolerance against 

freezing, drought and salt stresses in A. thaliana [48]. It has provided tolerance to freezing 

and cold stress [49]. In A. thaliana, the AtMYB15 gene was found to be effective in frost 

tolerance [50], and the GmMYBJ1 gene in acquiring cold and drought tolerance [51], 

while the OsMYB30 gene in O. sativa increased frost sensitivity [52] has been reported 

to be effective [37]. In another study, it was shown that PbrMYB5, an R2R3-type MYB 

gene in Pyrus betulifolia, positively modulated AsA synthesis, which is effective in cold 

stress tolerance, by binding to the promoter of the PbrDHAR2 gene as a transcriptional 

activator [47]. 

MYBs are TFs recognized to be effective in the cold stress response. MYBs also 

activate the relevant signal transduction pathways, as in other TFs, and also positively 

regulate the protein expression by connecting to the cis-elements located in the promoter 

site of target proteins (Fig. 4) [53]. 

 
Fig. 4. The role of myb transcription factors in the acquisition of cold stress tolerance 

[53]. 

Calmodulin-Binding Transcription Activator 

 

The calmodulin binding factors that contain the IQ domain for calmodulin binding 

belong to the CAMTA family. The N-terminal end of CAMTA proteins has the CG-1 

domain, which shows properties of specific DNA binding. This domain binds to the 

vCGCGb sequence, also known as the CG-1 element, located 1 kb upstream from the 

start codon of the CBF2 gene [45]. This interaction positively affects the expression of 
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the CBF2 transcription factor, which is known to play an active role in the cold stress 

response. As a result, the plant gains cold stress tolerance (Fig. 5). 

 
Fig. 5. The role of the CAMTA3 molecule in the acquisition of cold stress tolerance 

 

Heat-Shock Protein Family 

 

Abiotic stress factors such as cold and drought cause the proteins to deteriorate 

structurally and thus to lose their functions. Heat shock proteins, also known as molecular 

chaperones, are responsible the membrane integrity and protein structures of plant cells 

in the absence of any stressor, thereby maintaining cellular homeostasis [54]. Under 

stress, the expression levels of Hsps are controlled by transcription factors called Hsfs. 

Hsp molecules, whose expression level changes with heat stress, contribute to the 

establishment of stress tolerance by performing events such as protein folding or 

degradation, and determination of protein localization [55]. For this reason, Hsps have a 

very important role against environmental stresses (water scarcity, heavy metals, cold, 

heat) experienced by plants. Among the heat shock proteins have been relatively well 

defined [54]. 

 

Table 1. Cold stress tolerance studies and observed effects on some natural and 

transgenic plants in the last ten years 

 

Gene Plant Effect Reference 

AnCBFs 

 

Ammopiptanthus 

nanus 

 

Increased cold 

tolerance 
[55] 

GthCBF4 
Gossypium 

herbaceum 

Increased cold 

tolerance 
[56] 

JcCBF2 
Nicotiana 

benthamiana 

Enhanced 

drought tolerance 
[57] 

VvCBF2, VvCBF3, 

VvCBF4, VvCBF6 

Vitis vinifera 

V. riparia 
Cold tolerance [58] 

AtDREB1A 
Solanum 

lycopersicum 
Frost tolerance [59] 
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KcCBF3 

 

Kandelia candel 

 

Cold tolerance [60] 

MeCBF1 
A. thaliana 

Manihot esculenta 

Increased cold 

tolerance 
[61] 

GmDREB2A 
Solanum 

melongena 

Increased cold 

tolerance 
[62] 

PmhCBFc A. thaliana 

Increased 

freezing and 

oxidative stress 

tolerance 

[63] 

GhCBF3 A. thaliana 
Increased drought 

and salt tolerance 
[64] 

DaCBF7 O. sativa 
Enhanced cold 

tolerance 
[65] 

GmDREB1 A. thaliana 

Cold, 

temperature and 

drought tolerance 

[66] 

CbCBF N. tabacum Frost tolerance [67] 

NtDREB1A 

NtERD10B 

NtERD10C 

Malus domestica 

'Gala' 

Increased cold 

tolerance 
[68] 

VaCBF1 N. tabacum 
Increased cold 

tolerance 
[69] 

VaCBF4 A. thaliana 
Cold, salinity and 

drought tolerance 
[70] 

ZmCBF3 O. sativa 
Cold, salinity and 

drought tolerance 
[71] 

ZmDBP4 A. thaliana 

Enhanced cold 

and drought 

tolerance 

[72] 

PpCBF1v 
Apple (Malus × 

domestica) 

Increased cold 

tolerance 
[73] 
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TaDREB2 TaDREB3 
Triticum aestivum 

Hordeum vulgare 

Cold and drought 

tolerance 
[74] 

CsR2R3-MYB 
Camellia sinensis 

 

Increased cold 

tolerance 
[75] 

GmMYB81 Glycine max 
Increased cold 

tolerance 
[76] 

EgMY18,19,20 Elaeis guineensis 
Increased cold 

tolerance 
[77] 

MdMYB108L Malus communis 
Increased cold 

tolerance 
[78] 

PbrMYB5 Pyrus betulaefolia 
Increased cold 

tolerance 
[47] 

MdMYB124 Malus domestica 
Increased cold 

tolerance 
[79] 

MdMYB88 A. thaliana 

Soğuğa 

dayanıklılığının 

artması 

[79] 

OsMYBR1 O. sativa 
Increased cold 

tolerance 
[80] 

FtMYB9 
Fagopyrum 

tataricum 

Increased cold 

tolerance 
[81] 

MYB96 A. thaliana 
Increased cold 

tolerance 
[82] 

MdSIMYB1 
M. domestica 

'Gala' 

Increased cold 

tolerance 
[68] 

TaMYB56-D A. thaliana 
Increased cold 

tolerance 
[83] 

TaMYB56-B A. thaliana 
Increased cold 

tolerance 
[83] 

R2R3 MYB Cephala f. tricolor 
Increased cold 

tolerance 
[83] 

OsMYB2 O. Sativa 
Increased cold 

tolerance 
[84] 

CAMTA 
 

A. thaliana 

Increased cold 

tolerance 
[85] 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/fagopyrum-tataricum
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/fagopyrum-tataricum
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TaCAMTA1-A, 1-

D, 3-A ve 3-D 

 

Triticum 

aestivum L. 

 

Increased cold 

tolerance 
[86] 

CAMTA3 CAMTA5 A. thaliana 
Increased cold 

tolerance 
[87] 

Camta3 A.thaliana 
Increased cold 

tolerance 
[88] 

ZmCAMTA4a 

ZmCAMTA7a 

ZmCAMTA7b 

Zea mays L. 
Increased cold 

tolerance 
[89] 

Camta2 A.thaliana 
Increased cold 

tolerance 
[90] 

Camta1 A.thaliana 
Increased cold 

tolerance 
[90] 

CAMTA3 A. thaliana 
Increased cold 

tolerance 
[45] 

 

HbHsfA4a 

HbHsfA4d, 

HbHsfA9b, 

HbHsfC1a 

HbHsfC1b 

Hevea brasiliensis 

 

Increased cold 

tolerance 

[91] 

RcHSP70 Rosa hybrida L. 
Increased cold 

tolerance 
[92] 

QBS00812_HSP70 Lens culinaris 
Increased cold 

tolerance 
[93] 

RcHSP70 R. hybrida L. 
Increased cold 

tolerance 
[92] 

SlHSP17.7 S. lycopersicum L. 
Increased cold 

tolerance 
[94] 

LpHSFC1 Lolium perenne L. 
Increased cold 

tolerance 
[95] 

LpHSFC1b L. perenne L. 
Increased cold 

tolerance 
[95] 

HbHsfA4a 
H. brasiliensis 

 

Increased cold 

tolerance 
[96] 

HbHsfA1 

HbHsfB1 
H. brasiliensis 

Increased cold 

tolerance 
[97] 
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KoHsp70 G. hirsutum 
Increased cold 

tolerance 
[98] 

 

CONCLUSIONS AND FUTURE PERSPECTIVES 

 

Adaptation to the cold enables the low temperature resistant medicinal plants to gain 

frost resistance and to spend the winter months without being damaged by frost. The 

survival of these types of plants through the winter depends on their adaptability to the 

cold. Considering that the lowest average annual temperature is around 0 °C in most of 

the world and -10 °C in nearly half of it, the importance of cold adaptation and frost 

resistance on the yield to be obtained from agricultural activities in such environments 

will be better understood. Knowing the metabolic and molecular changes that occur in 

cold-resistant plant species and genotypes during cold adaptation will be beneficial both 

in terms of breeding studies and in terms of giving an idea about the species and genotype 

to be grown. Meeting the nutritional needs of the ever-increasing world population 

depends on the prevention of losses caused by low temperature stress. For this reason, 

breeding studies are carried out to obtain genotypes that are more tolerant to low 

temperatures, more adaptable to cold, and higher frost resistance. 
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